Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

DESIGN OF HIGHLY EFFICIENT CATALYST FOR CATALYTIC MEMBRANE REACTOR OF HYDROGEN PRODUCTION

https://doi.org/10.15518/isjaee.2016.13-14.013-030

Abstract

The paper presents data on the development of catalytic materials with improved characteristics for catalytic membrane reactors of autothermal reforming of methane (ATR of CH4) obtained in the frame of the International collaborative project DEMCAMER – Design and Manufacturing of Catalytic Membrane Reactors by developing new nano-architectured catalytic and selective membrane materials. The Ni and Ni-Me (Me = Pt, Pd, Re, Mo, Sn) catalysts were synthesized based on different supports (La2O3, Ce1-xZrxOy, Ce1-xGdxOy, CeZrO2/Al2O3, La2O3-CeZrO2/Al2O3). Their activity was studied in the reaction of autothermal reforming of methane. The purposeful regulation of composition of Ni-containing phase (NiO, La-Ni-O, Al-Ni-O), average particle size of NiO (6-50 nm), and redox properties of Ni cations is realized by variation of support composition. The optimal composition and preparation mode of catalyst 10Ni0.5Pd/10CeZrO2/Al2O3 as well as reaction conditions were established. The catalyst provides at 850 ºС the H2 yield of ~60% and is characterized by stable work in condition of АТР of СH4 that indicates the availability of its application for rational methane conversion to hydrogen-containing gas.

About the Authors

I. Z. Ismagilov
Boreskov Institute of Catalysis SB RAS 5 Akademik Lavrentiev, Novosibirsk, 630090, Russia tel.: +7(383)330-62-19; fax: +7(383)330-62-19
Russian Federation

Ph.D. (chemistry), Researcher of Boreskov Institute of Catalysis



E. V. Matus
Boreskov Institute of Catalysis SB RAS 5 Akademik Lavrentiev, Novosibirsk, 630090, Russia tel.: +7(383)330-62-19; fax: +7(383)330-62-19
Russian Federation

Ph.D. (chemistry), Researcher of Boreskov Institute of Catalysis



V. V. Kuznetsov
Boreskov Institute of Catalysis SB RAS 5 Akademik Lavrentiev, Novosibirsk, 630090, Russia tel.: +7(383)330-62-19; fax: +7(383)330-62-19
Russian Federation

Ph.D. (chemistry), Researcher of Boreskov Institute of Catalysis



M. A. Kerzhentsev
Boreskov Institute of Catalysis SB RAS 5 Akademik Lavrentiev, Novosibirsk, 630090, Russia tel.: +7(383)330-62-19; fax: +7(383)330-62-19
Russian Federation

Ph.D. (chemistry), Senior Researcher of Boreskov Institute of Catalysis



N. Mota
Instituto de Catálisis y Petroleoquímica, CSIC 2 Marie Curie, Madrid, 28049, Spain
Russian Federation

Ph.D. (chemistry), Senior Researcher of Boreskov Institute of Catalysis



R. M. Navarro
Instituto de Catálisis y Petroleoquímica, CSIC 2 Marie Curie, Madrid, 28049, Spain
Russian Federation


J.-L. G. Fierro
Instituto de Catálisis y Petroleoquímica, CSIC 2 Marie Curie, Madrid, 28049, Spain
Russian Federation


A.-J. J. Koekkoek
Hybrid Catalysis B.V. Den Dolech 2, Eindhoven 5612, AZ, the Netherlands
Russian Federation


G. Gerritsen
Hybrid Catalysis B.V. Den Dolech 2, Eindhoven 5612, AZ, the Netherlands
Russian Federation


H.-C. L. Abbenhuis
Hybrid Catalysis B.V. Den Dolech 2, Eindhoven 5612, AZ, the Netherlands
Russian Federation


Yu. A. Zaharov
Institute of Coal Chemistry and Material Science of Federal Research Centre of Coal and Coal Chemistry SB RAS 18 Sovetskiy ave., Kemerovo, 650000, Russia tel.: +7(3842)36-55-86; fax: +7(3842)36-55-86 Kemerovo State University 6 Krasnaya str., Kemerovo, 650043, Russia tel.: +7 (3842) 58-05-91
Russian Federation

D.Sc. (chemistry), Professor, Corresponding Member of RAS, Head of Chair of KemSU, Head of Laboratory of Institute of Coal Chemistry and Material Science of Federal Research Centre of Coal and Coal Chemistry SB RAS

 

 



Z. R. Ismagilov
Boreskov Institute of Catalysis SB RAS 5 Akademik Lavrentiev, Novosibirsk, 630090, Russia tel.: +7(383)330-62-19; fax: +7(383)330-62-19 Institute of Coal Chemistry and Material Science of Federal Research Centre of Coal and Coal Chemistry SB RAS 18 Sovetskiy ave., Kemerovo, 650000, Russia tel.: +7(3842)36-55-86; fax: +7(3842)36-55-86
Russian Federation

D.Sc. (chemistry), Professor, Corresponding Member of RAS, Director of Institute of Coal Chemistry and Material Science of Federal Research Centre of Coal and Coal Chemistry SB RAS



References

1. Kuzyk B.N., Yakovets Yu.V. Rossiâ: strategiâ perehoda k vodorodnoj ènergetike. Moscow Institut èkonomičeskih strategij, 2007 (in Russ.).

2. World Energy Technology Outlook-2050 - WETO H2. EC Luxemburg, 2007 (in Eng.).

3. Stolyarevsky A.Ya. Proizvodstvo al’ternativnogo topliva na osnove âdernyh ènergoistočnikov. Ros. him. ž., 2008, vol. LII, no. 6, pp. 73–77(in Russ.).

4. Stankiewicz A., Moulijn J.A. Process intensification: transforming chemical engineering. Chem. Eng. Prog., 2000, vol. 96, pp. 22–34 (in Eng.).

5. Ponce-Ortega J.M., Al-Thubaiti M.A., El-Halwagi M. M. Process intensification: New understanding and systematic approach. Chem. Eng. Process, 2012, vol. 53, pp. 63–75 (in Eng.).

6. Moulijn J.A., Stankiewicz A., Grievink J., Gorak A. Process intensification and process systems engineering: A friendly symbiosis. Comput. Chem. Eng., 2008, vol. 32, pp. 3–11 (in Eng.).

7. Lutze P., Gani R, Woodley J. M. Process intensification: A perspective on process synthesis. Chem. Eng. Process, 2019, vol. 49, pp. 547–558 (in Eng.).

8. Baldea M. From process integration to process intensification. Comput. Chem. Eng., 2005, vol. 81, pp. 104–114 (in Eng.).

9. Sarkisov P.D. Problemy ènergo- i resursosbereženiâ v himičeskoj tehnologii, neftehimii i biotehnologii. Him. prom-st’, 2000, vol. 1, pp. 20–27 (in Russ.).

10. Drioli E., Stankiewicz A.I., Macedonio F. Membrane engineering in process intensification - An overview. J. Membr. Sci., 2011, vol. 380, pp. 1–8 (in Eng.).

11. Sirkar K.K., Fane A.G., Wang R., Wickramasinghe S.R. Process intensification with selected membrane processes. Chem. Eng. Process, 2015, vol. 87, pp. 16–25 (in Eng.).

12. Liu P.K.T., Sahimi M., Tsotsis T.T. Process intensification in hydrogen production from coal and biomass via the use of membrane-based reactive separations. Curr. Opin. Chem. Eng., 2012, vol. 1, pp. 342–351 (in Eng.).

13. Kislov V.R., Kryzhanovsky A. S., Skudin V.V. Sravnenie memb rannyh katalitičeskih reaktorov s obyčnym reaktoro m na primere suhoj konversii metana. Uspehi himii i himičeskoj tehnologii, 2013, vol. XVII, no. 4, pp. 73–77 (in Russ.).

14. Dalmon J.-A., Cru z-Lopez A., Farrusseng D., Guilhaume N., Iojoiu E., Jalibert J.-C., Miachon S., Mirodatos C., Pantazidis A., Rebeilleau-Dassonneville M., Schuurman Y., Veen A.C. Oxidation in catalytic membrane reactors. Appl. Catal. A, 2007, vol. 325, pp. 198–204 (in Eng.).

15. Buharkina T.V., Gavrilova N.N., Skudin V.V. Membrannyj katalitičeskij reaktor. Režimy raboty, kinetičeskij èksperiment. Kataliz v promyšlennosti, 2015, vol. 15, no. 4, pp. 14–21 (in Russ.).

16. Lukyanov B.N., Andreev D.V., Parmon V.N. Catalytic reactors with hydrogen membrane separation. Chem. Eng. J., 2009, vol. 154, pp. 258–266 (in Eng.).

17. Membrane Reactor Technology (MRT). Available at: www.membranereactor.com (in Eng.).

18. Demcamer – Catalytic Membrane Reactors. Availabke at: www.demcamer.org (in Eng.)

19. Ismagilov I.Z., Matus E.V., Kuznetsov V.V., Mota N., Navarro R.M., Kerzhentsev M.A., Ismagilov Z.R., Fierro J.L.G. Nanoscale control during synthesis of Me/La2O3, Me/CexGd1−xOy and Me/CexZr1−xOy (Me =Ni, Pt, Pd, Rh) catalysts for autothermal reforming of methane. Catal. Today., 2013, vol. 210., pp. 10–18 (in Eng.).

20. Kaneko H., Taku S., Tamaura Y. Reduction reactivity of CeO2-ZrO2 oxide under high O2 partial pressure in two-step water splitting processor. Solar Energy, 2011, vol. 85, pp. 2321–2330 (in Eng.).

21. Ismagilov I.Z., Matus E.V., Kuznetsov V.V., Kerzhentsev M.A., Yashnik S. A., Prosvirin I.P., Mota N., Navarro R.M., Fierro J.L.G., Ismagilov Z.R. Hydrogen production by autothermal reforming of methane over NiPd catalysts: Effect of support composition and preparation mode. IJHE, 2014, vol. 39, pp. 20992–21006 (in Eng.).

22. Ismagilov I.Z., Matus E.V., Nefedova D.V., Kuznetsov V.V., Yashnik S.A., Kerzhentsev M.A., Ismagilov Z. R. Vliânie modificirovaniâ nositelâ na fiziko - himičeskie svojstva NiPd/Al2O3-katalizatora avtotermičeskogo riforminga metana. inetika i kataliz, 2015, vol. 56, no. 3, pp. 397–406 (in Russ.).

23. Ismagilov I.Z., Matus E.V., Kuznetsov V.V., Mota N., Navarro R.M., Yashnik S.A., Prosvirin I.P., Kerzhentsev M.A., Ismagilov Z.R., Fierro J.L.G. Hydrogen production by autothermal reforming of methane: Effect of promoters (Pt, Pd, Re, Mo, Sn) on the performance of Ni/La2O3 catalysts. Appl. Catal. A., 2014, vol. 481, pp. 104–115 (in Eng.).

24. Montoya J.A., Romero-Pascual E., Gimon C., Del Angel P., Monzón A. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol–gel. Catal. Today, 2000, vol. 63, pp. 71–85 (in Eng.).

25. Pengpanich S., Meeyoo V., Rirksomboon T. Methane partial oxidation over Ni/CeO2– ZrO2 mixed oxide solid solution catalysts. Catal. Today, 2004, vol. 93–95, pp. 95–105 (in Eng.).

26. Escritori J.C., Dantas S.C., Soares R.R., Hori C.E. Methane autothermal reforming on nickele ceria zirconia based catalysts. Catal. Commun., 2009, vol. 10, pp. 1090–1094 (in Eng.).

27. Takeguchi T., Furukawa S.N., Inoue M., Eguchi K. Autothermal reforming of methane over Ni catalysts supported over CaO–CeO2–ZrO2 solid solution. Appl. Catal. A, 2003, vol. 240, pp. 223–233 (in Eng.).

28. Li D., Nakagaw Y., Tomishige K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl. Catal. A, 2011, vol. 1–2, pp. 1–24 (in Eng.).

29. Dias J.A.C., Assaf J.M. Autothermal reforming of methane over Ni/γ-Al2O3 promoted with Pd: The effect of the Pd source in activity, temperature profile of reactor and in ignition. Appl. Catal. A, 2008, vol. 334, pp. 243–250 (in Eng.).

30. Profeti L.P.P., Ticianelli E.A., Assaf E.M. Production of hydrogen via steam reforming of biofuels on Ni/CeO2-Al2O3 catalysts promoted by noble metals. IJHE, 2009, vol. 34, pp. 5049–5060 (in Eng.).

31. Roh H.S., Jun K.W., Park S.E. Methanereforming reactions over Ni/Ce-ZrO2/θ-Al2O3 catalysts. Appl. Catal. A, 2003, vol. 251, pp. 275–283 (in Eng.).

32. Profeti L.P.P., Dias J.A.C., Assaf J.M., Assaf E.M. Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals. J. Power Sources, 2009, vol. 190, pp. 525–533 (in Eng.).

33. Abreu A.J., Lucredio A.F., Assaf E.M. Ni catalyst on mixed support of CeO2-ZrO2 and Al2O3: Effect of composition of CeO2-ZrO2 solid solution on the methane steam reforming reaction. Fuel Process. Technol., 2012, vol. 102, pp. 140–145 (in Eng.).

34. Tsipouriari V.A., Verykios X.E. Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst. Catal. Today., 2001, vol. 64, pp. 83–90 (in Eng.).

35. Santos D.C.R.M., Madeira L., Passos F.B. The effect of the addition of Y2O3 to Ni/α-Al2O3 catalysts on the autothermal reforming of methane. Catal. Today, 2010, vol. 149, pp. 401–406 (in Eng.).

36. Dantas S.C., Escritori J.C., Soares R.R., Hori C.E. Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane. Chem. Eng. J., 2010, vol. 156, no. 2, pp. 380– 387 (in Eng.).

37. Yoshida K., Begum N., Ito S.-I., Tomishige K. Oxidative steam reforming of methane over Ni/a-Al2O3 modified with trace noble metals. Appl. Catal. A, 2009, vol. 358, pp. 186–192 (in Eng.).

38. Pengpanich S., Meeyoo V., Rirksomboon T., Schwank J. iso-Octane partial oxidation over Ni- Sn/Ce0.75Zr0.25O2 catalysts. Catal. Today, 2008, vol. 136, pp. 214–221 (in Eng.).

39. Hou Z., Yokota O., Tanaka T., Yashima T. Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane. Appl. Surf. Sci., 2004, vol. 233, pp. 58–68 (in Eng.).

40. Zhou L., Guo Y., Chen J., Sakurai M., Kameyama H. Trace precious metal Pt doped plate-type anodic alumina Ni catalysts for methane reforming reaction. Fuel, 2012, vol. 92, pp. 373–376 (in Eng.).

41. Requies J., Cabrero M.A., Barrio V.L., Güemez M.B., Cambra J.F., Arias P.L., Pérez-Alonso F J., Ojeda M., Pena M.A., Fierro J.L.G. Partial o xidation of methane to syngas over Ni/MgO and Ni/La2O3 catalysts. Appl. Catal. A, 2005, vol. 289, pp. 214–223 (in Eng.).

42. Rida K., Pena M.A., Sastre E., Martinez-Arias A. Effect of calcination temperature on structural properties and catalytic activity in oxidation reactions of LaNiO3 perovskite prepared by Pechini method. J. Rare Earths, 2012, vol. 30, pp. 210–216 (in Eng.).

43. Wang Y., Zhu J., Yang X., Lu L., Wang X. Preparation and characterization of LaNiO3 nanocrystals. Mater. Res. Bull., 2006, vol. 41, pp. 1565–1570 (in Eng.).

44. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. A, 1976, vol. 32, pp. 751–767 (in Eng.).

45. Silva C.R.B., Conceicão L., Ribeiro N.F.P., Souza M.M.V.M. Partial oxidation of methane over Ni– Co perovskite catalysts. Catal. Commun., 2011, vol. 12, pp. 665–668 (in Eng.).

46. Liu X., Cheng B., Hu J., Qin H., Jiang M. Partial oxidation of methane over Ni– Co perovskite catalysts. Sens. Actuators. B, 2008, vol. 129, pp. 53–58 (in Eng.).

47. Provendier H., Petit C., Estournès C., Libs S., Kiennemann A. Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition. Appl. Catal. A, 1999, vol. 180, pp.163–173 (in Eng.).

48. Dissanayake D., Rosynek M. P., Kharas K.C.C., Lunsford J.H. Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3 catalyst. J. Catal., 1991, vol. 132, pp. 117–127 (in Eng.).

49. Yoshida K., Okumura K., Miyao T., Naito S., Ito S., Kunimori K., Tomishige K. Oxidative steam reforming of methane over Ni/α-Al2O3 modified with trace Pd. Appl. Catal. A, 2008, vol. 351, pp. 217–225 (in Eng.).

50. Christensen K.O., Chen D., Lødeng R., Holmen A. Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl. Catal., 2006, vol. 314, pp. 9–22 (in Eng.).

51. Mukainakano Y., Yoshida K., Okumura K., Kunimori K., Tomishige K. Catalytic performance and QXAFS analysis of Ni catalysts modified with Pd for oxidative steam reforming of methane. Catal. Today, 2008, vol. 132, pp. 101–108 (in Eng.).


Review

For citations:


Ismagilov I.Z., Matus E.V., Kuznetsov V.V., Kerzhentsev M.A., Mota N., Navarro R.M., Fierro J.G., Koekkoek A.J., Gerritsen G., Abbenhuis H.L., Zaharov Yu.A., Ismagilov Z.R. DESIGN OF HIGHLY EFFICIENT CATALYST FOR CATALYTIC MEMBRANE REACTOR OF HYDROGEN PRODUCTION. Alternative Energy and Ecology (ISJAEE). 2016;(13-14):13-30. (In Russ.) https://doi.org/10.15518/isjaee.2016.13-14.013-030

Views: 999


ISSN 1608-8298 (Print)