Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

ТОНКИЕ ПЛЕНКИ Cu2ZnSn(S,Se)4 ДЛЯ ИСПОЛЬЗОВАНИЯ В СОЛНЕЧНЫХ ЭЛЕМЕНТАХ ТРЕТЬЕГО ПОКОЛЕНИЯ

https://doi.org/10.15518/isjaee.2016.15-18.031-053

Полный текст:

Аннотация

Проведено обобщение литературных данных о методах получения тонких пленок Cu2ZnSn(S,Se)4 и разработке солнечных элементов на основе этого материала. Проанализированы сведения о фазовых состояниях в системе Cu-Zn-Sn-Se (S) и оптимальном элементном составе Cu2ZnSn(S,Se)4 для использования в фотопреобразователях. Рассмотрены механизмы протекания реакции селенизации металлических прекурсоров Cu-Zn-Sn и методы удаления побочных фаз. Особое внимание уделено вопросам использования электрохимических технологий в процессе получения данного материала.

Об авторах

С. А. Башкиров
Научно-практический центр по материаловедению Национальной академии наук Беларуси, Минск
Беларусь
Семен Александрович Башкиров: магистр химических наук, кандидат физико-математических наук, старший научный сотрудник


Р. Кондротас
Научно-исследовательский институт «Центр физических и технологических наук», Вильнюс
Литва

Рокас Кондротас: доктор физических наук, научный сотрудник в Группе солнечных материалов и систем в Каталонском институте энергетических исследований



В. Ф. Гременок
Научно-практический центр по материаловедению Национальной академии наук Беларуси, Минск
Беларусь
Валерий Феликсович Гременок: доктор физико-математических наук, доцент, заведующий лабораторией физики твердого тела


Р. Л. Юшкенас
Научно-исследовательский институт «Центр физических и технологических наук», Вильнюс
Литва
Ремигюс Л. Юшкенас: доктор физических наук, профессор, главный научный сотрудник, заведующий отделом структурных исследований материалов


И. И. Тюхов
Всероссийский научно-исследовательский институт электрификации сельского хозяйства, Москва
Россия
Игорь Иванович Тюхов: кандидат технических наук, доцент, заместитель заведующего кафедрой ЮНЕСКО «Возобновляемая энергетика и электрификация сельского хозяйства»


Список литературы

1. Zervos A. Renewable 2014 global status report // Renewable energy policy network for the 21st century REN21. 2014. P. 1–141.

2. Рютер Г., Гурков А. Мировая солнечная энергетика: переломный год // Deutsche Welle. 2013. Электронный ресурс: http://www.dw.com/ru/мировая-солнечная-энергетика-переломный-год/a-16844461

3. Gadalova O.E., Symonenko S.H., Eidelman B.L. et al. Russia and Ukraine PV market report // Cleandex. 2011. P. 1–35. Электронный ресурс: http://www.cleandex.ru/files/publications/3100/3105/cleandex_pv_russia_ukraine_2011_rev1.1.pdf

4. Mitzi D.B., Gunawan O., Todorov T.K. et al. The path towards a high-performance solution-processed kesterite solar cell // Sol. Energy Mater. Sol. Cells. 2011. Vol. 95. P. 1421–1436.

5. Wang H. Progress in thin film solar cells based on Cu2ZnSnS4 // Inter. J. Photoenergy. 2011. Vol. 2011. P. 801292.

6. Abermann S. Non-vacuum processed next generation thin film photovoltaics: towards marketable efficiency and production of CZTS based solar cells // Solar Energy. 2013. Vol. 94. P. 37–70.

7. Siebentritt S. Why are kesterite solar cells not 20% efficient? // Thin solid films. 2013. Vol. 535. P. 1–4.

8. Willoughby A. Solar cell materials: developing technologies. London: John Wiley & Sons, 2014.

9. Ракитин В.В., Новиков Г.Ф. Солнечные преобразователи третьего поколения на основе кестеритов Cu-Zn-Sn-(S, Se) // Успехи химии. 2016. Принято к публикации.

10. Nitsche R., Sargent D F., Wild P. Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport // J. Cryst. Growth. 1967. Vol. 1. P. 52–53.

11. Ito K., Nakazawa T. Electrical and optical properties of stannite-type quaternary semiconductor thin films // Jpn. J. Appl. Phys. 1988. Vol. 27. P. 2094– 2097.

12. Katagiri H., Sasaguchi N., Hando S. et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of e-B evaporated precursors // Solar Energy Materials and Solar Cells. 1997. Vol. 49. P. 407– 414.

13. Katagiri H., Saitoh K., Washio T. et al. Development of thin film solar cell based on Cu2ZnSnS4 thin film // 11th Tech. Dig. Photovoltaic Science and Engineering Conf., Sapporo. 1999. P. 647.

14. Katagiri H., Jimbo K., Moriya K. et al. Solar cell without environmental pollution by using CZTS thin film // 3rd World Conf. on Photovoltaic Energy Conversion-3, Osaka. 2003. P. 2874.

15. Katagiri H., Jimbo K., Yamada S. et al. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique // Appl. Phys Express. 2008. Vol. 1. P. 041201.

16. Repins I., Beall C., Vora N. et al. Coevaporated Cu2ZnSnSe4 films and devices // Sol. Energy Mater. Sol. Cells. 2012. Vol. 101. P. 154–159.

17. Friedlmeier Th.M., Wieser N., Walter T. et al. Heterojuncitons based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films // Proceedings of the 14th European conference of photovoltaic science and engineering and exhibition, Belford. 1997. P. 1242.

18. Kim J., Hiroi H., Todorov T. K. et al. Sugimoto H., Mitzi D. B. High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter // Adv. Mater. 2014. Vol. 26. P. 7427–7431.

19. Jimbo K., Kimura R., Kamimura T., Yamada S., Maw W. S., Araki H., Oishi K., Katagiri H. Cu2ZnSnS4type thin film solar cells using abundant materials // Thin solid films. 2007. Vol. 515. P. 5997–5999.

20. Todorov T.K., Reuter K.B., Mitzi D.B. Highefficiency solar cell with earth-abundant liquidprocessed absorber // Adv. Energy Mater. 2010. Vol. 22. P. E156–E159.

21. Todorov T.K., Gunawan O., Chey S.J. et al. Progress towards marketable earth-abundant chalcogenide solar cells // Thin solid films. 2011. Vol. 519. P. 7378–7381.

22. Barkhouse D.A.R., Gunawan O., Gokmen T. et al. Device characteristics of a 10.1 % hydrazineprocessed Cu2ZnSn(Se,S)4 solar cell // Prog. Photovolt. Res. Appl. 2012. Vol. 20. P. 6–11.

23. Todorov T.K., Tang J., Bag S. et al. Beyond 11% efficiency: characteristics of state-of-art Cu2ZnSn(S, Se)4 solar cells // Adv. Energy Mater. 2013. Vol. 3. P. 34–38.

24. Maeda T., Nakamura S., Wada T. Electronic structure and phase stability of in-free photovoltaic semiconductors, Cu2ZnSnSe4 and Cu2ZnSnS4 by firstprinciples calculation // Mater. Res. Soc. Symp. Proc. 2009. P. 1165.

25. Bernardini G.P., Borrini D., Caneschi A. et al. EPR and SQUID magnetometry study of Cu2FeSnS4 (stannite) and Cu2ZnSnS4 (kesterite) // Physics and Chemistry of Minerals. 2000. Vol. 27. P. 453–461.

26. Hall S.R., Szymanski J.T., Stewart J.M. Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4, structurally similar but distinct minerals // Canadian Mineralogist. 1978. Vol. 16. P. 131–137.

27. Lide D.R. Handbook of Chemistry and Physics. Boca Raton: CRC press, 1998–1999.

28. Scragg J.J. Studies of Cu2ZnSnS4 films prepared by sulphurisation of electrodeposited precursors. Diss. University of Bath. 2010.

29. Olekseyuk D., Dudchak I.V., Piskach L.V. Phase equilibria in the Cu2SZnS-SnS2 system // J. Alloys Compd. 2004. Vol. 368. P. 135–143.

30. Weber A. Wachstum von Dünnschichten des Materialsystems Cu-Zn-Sn-S, Friedrich-AlexanderUniversität Erlangen-Nürnberg, Diss., 2009.

31. Maeda T., Nakamura S., Wada T. First principles calculations of defect formation in In-free photovoltaic semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 // Jpn. J. Appl. Phys. 2011. Vol. 50. P. 04DP07.

32. Chen S., Yang J., Gong X. G. et al. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 // Phys. Rev. B. 2010. Vol. 81. P. 245205.

33. Nagaoka A., Yoshino K., Taniguchi H. et al. Preparation of Cu2ZnSnS4 single crystals from Sn solutions // J. Cryst. Growth. 2012. Vol. 341. P. 38–41.

34. Nagaoka A., Yoshino K., Taniguchi H. et al. Growth of Cu2ZnSnSe4 single crystals from Sn solutions // J. Cryst. Growth. 2012. Vol. 354. P. 147–151.

35. Bjorkman P., Scragg J., Flammersberger H. et al. Influence of precursor sulfur content on film formation and compositional changes in Cu2ZnSnS4 film and solar cells // Sol. Energy Mater. Sol. Cells. 2012. Vol. 98. P. 110–117.

36. Vigil-Galán O., Espíndola-Rodríguez M., Courel M. et al. Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact on the high power conversion efficiency // Sol. Energy Mater. Sol. Cells. 2013. Vol. 117. P. 246–250.

37. Dimitrievska M., Fairbrother A., IzquierdoRoca V. et al. Two ideal compositions for kesteritebased solar cell devices // 40th Photovoltaic Specialist Conference IEEE, Denver. 2014. P. 2307–2309.

38. Katagiri H., Jimbo K., Tahara M. et al. The influence of the composition ratio on CZTS-based thin film solar cells // Mater. Res. Soc. Symp. Proc. 2009. Vol. 1165. P. 1165–M04-01.

39. Delbos S. Kesterite thin films for photovoltaics: a review // EPJ Photovoltaics. 2012. Vol. 3. P. 35004.

40. Chen S., Walsh A., Gong X. et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers // Adv. Mater. 2013. Vol. 25. P. 1522–1539.

41. Redinger A., Siebentritt S. Co-evaporation of Cu2ZnSnSe4 thin films // Appl. Phys. Lett. 2010. Vol. 97. P. 092111.

42. Hergert F., Hock R. Predicted formation reactions for solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X=S, Se) starting from binary chalcogenides // Thin solid films. 2007. Vol. 515. P. 5953–5956.

43. Fairbrother A., Fontané X., Izquierdo-Roca V. et al. On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurizaion of metallic stacks // Sol. Energy Mater. Sol. Cells. 2013. Vol. 112. P. 97–105.

44. Schurr R., Holzing A., Jost S. et al. The crystallization of Cu2ZnSnS4 thin film solar cell absorbers from coelectroplated Cu-Zn-Sn precursors // Thin solid films. 2009. Vol. 517. P. 2465–2468.

45. Yoo H., Wibowo R. A., Holzing A. et al. Investigation of the solid state reactions by time-resolved X-ray diffraction while crystallizing kesterite Cu2ZnSnSe4 thin films // Thin solid films. 2013. Vol. 535. P.73–77.

46. Wibowo R. A., Moeckel S. A., Yoo H. et al. Intermetallic compounds dynamic formation during annealing of stacked elemental layers and its influences on the crystallization of Cu2ZnSnSe4 films // Mater. Chem. Phys. 2013. Vol. 142. P. 311–317.

47. Redinger A., Berg D. M., Dale P. J. et al. The consequences of kesterite equilibria for efficient solar cells // J. Am. Chem. Soc. 2011. Vol. 133. P. 3320– 3323.

48. Redinger A., Mousel M., Djemour R. et al. Cu2ZnSnSe4 thin film solar cells produced via coevaporation and annealing including a SnSe2 capping layer // Prog. Photovolt: Res. Appl. 2014. Vol. 22. P. 51–57.

49. López-Marino S., Placidi M., Pérez-Tomás A. et al. Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer // J. Mater Chem. A. 2013. Vol. 29. P. 8338–8343.

50. Scragg J.J., Watjen J.T., Edoff M. et al. A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S, Se)4 thin film solar cells // J. Am. Chem. Soc. 2012. Vol. 134. P. 19330–19333.

51. Li W., Chen J., Cui H. et al. Inhibiting MoS2 formation by introducing a ZnO intermediate layer for Cu2ZnSnS4 solar cells // Mater. Lett. 2014. Vol. 130. P. 87–90.

52. Kuo D. H., Hsu J., Saragih A. D. Effects of the metallic target compositions on the absorber properties and the performance of Cu2ZnSnSe4 solar cell devices fabricated on TiN-coated Mo/glass substrates // Mater. Sci. Eng. B. 2014. Vol. 186. P. 94–100.

53. Shin B., Zhu Y., Bojarczuk N. A. et al. Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier // Appl. Phys. Lett. 2012. Vol. 101. P. 053903.

54. Yoo H., Kim J. Comparative study of Cu2ZnSnSe4 film growth // Solar Energy Materials and Solar Cells. 2010. Vol. 95. P. 239–244.

55. Fernandes P.A., Salome P.M.P., Cunha A.F. Precursors’ order effect on the properties of sulfurized Cu2ZnSnS4 thin films // Semiconductor Science and Technology. 2009. Vol. 24. P. 105013.

56. Wang K., Gunawan O., Todorov T.K. et al. Thermally evaporated Cu2ZnSnS4 solar cells // Appl. Phys. Lett. 2010. Vol. 97. P. 143508.

57. Watjen J.T., Engman J., Edoff M. et al. Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells // Appl. Phys. Lett. 2012. Vol. 100. P. 173510.

58. Mousel M., Redinger A., Djemour R. et al. HCl and Br2-MeOH etching of Cu2ZnSnSe4 polycrystalline absorbers // Thin solid films. 2013. Vol. 535. P. 83–87.

59. Timmo K., Altosaar M., Raudoja J. et al. Chemical etching of Cu2ZnSn(S, Se)4 monograin powder // 35th IEEE Photovoltaic Specialists Conference, Honolulu. 2010. P. 001982–001985.

60. Fairbrother A., Garcia-Hemme E., IzquierdoRoca V. et al. Development of a selective chemical etch to improvethe conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells // J. Am. Chem. Soc. 2012. Vol. 134. P. 8018–8021.

61. López-Marino S., Sánchez Y., Placidi M. et al. ZnSe etching of Zn-rich Cu2ZnSnSe4: an oxidation route for improved solar-cell efficiency // Chem. Eur. J. 2013. Vol. 19. P. 14814–14822.

62. Hsu W., Repins I., Beal C. et al. The effect of Zn excess on kesterite solar cells // Sol. Energy Mater. Sol. Cells. 2013. Vol. 113. P. 160–164.

63. Johnson D. R. Microstructure of electrodeposited CdS/CdTe cells // Thin solid films. 2000. Vol. 361–362. P. 321–326.

64. Hibberd C. J., Chassaing E., Liu W. et al. Nonvacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers // Prog. Photovolt. Res. Appl. 2010. Vol. 18. P. 434–452.

65. Yoon J., Cho S., Kim W. M. et al. Optical analysis of the microstructure of a Mo backcontact for Cu(In, Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity // Sol. Energy Mater. Sol. Cells. 2011. Vol. 95. P. 2959–2964.

66. Scofield J.J., Duda A., Albin D., Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells // Thin solid films. 1995. Vol. 260. P. 26–31.

67. Li Z., Cho E., Kwon S. J. Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In, Ga)Se2 solar cells // Appl. Surf. Sci. 2011. Vol. 257. P. 9682–9688.

68. Pethe S.A., Takahashi E., Kaul A. et al. Effect of sputtering process parameters on film properties of molybdenumback contact // Sol. Energy Mater. Sol. Cells. 2012. Vol. 100. P. 1–5.

69. Wu H., Liang S., Lin Y. et al. Structure and electrical properties of Mo back contact for Cu(In,Ga)Se2 solar cells // Vacuum. 2012. Vol. 86. P. 1916–1919.

70. Jubault M., Ribeaaucourt L., Chassaing E. et al. Optimization of molybdneum thin films forelectrodeposited CIGS solar cells // Sol. Energy Mater. Sol. Cells. 2011. Vol. 95. P. 147.

71. Martinez M.A., Guillen C. Effect of r.f.sputtered Mo substrate on the microstructure of electrodeposited CuInSe2 thin films // Surf. Coat. Technol. 1998. Vol. 110. P. 62–67.

72. Zhu X., Zhou Z., Wang Y. et al. Determining factor of MoSe2 formation in Cu(In, Ga)Se2 solar cells // Sol. Energy Mater. Sol. Cells. 2012. Vol. 101. P. 57–61.

73. Basol B.M., Kapur V.K., Leidholm C.R. et al. Studies on substrates and contacts for CIS films and devices // IEEE First World Conference, Waikoloa. 1994. Vol. 1. P. 148–151.

74. Kondrotas R., Jushkenas R., Naujokaitis A. et al. Investigation of selenization process of electrodeposited Cu–Zn–Sn precursor for Cu2ZnSnSe4 thin-film solar cells // Thin solid films. 2015. Vol. 589. P. 165–172.

75. Ennaoui A., Lux-Steiner M., Weber A. et al. Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel lowcost perspective // Thin solid films. 2009. Vol. 517. P. 2511–2514.

76. Araki H., Kubo Y., Jimbo K. et al. Preparation of Cu2ZnSnS4 thin films by sulfurization of coelectroplated Cu-Zn-Sn precursors // Phys. Status Solidi C. 2009. Vol. 6. P. 1266–1268.

77. Juskėnas R., Giraitis R., Kanapeckaitė S. et al. A two-step approach for electrochemical deposition of Cu-Zn-Sn and Se precursors for CZTSe solar cells // Sol. Energy Mater. Sol. Cells. 2012. Vol. 101. P. 277–282.

78. Zhang Y., Liao C., Zong K. et al. Cu2ZnSnSe4 thin film solar cells prepared by rapid thermal annealing of co-electroplated Cu-Zn-Sn precursors // Sol. Energy. 2013. Vol. 94. P. 1–7.

79. Kondrotas R., Juskenas R., Naujokaitis A. et al. Characterization of Cu2ZnSnSe4 solar cells prepared from electrochemically co-deposited Cu–Zn–Sn alloy // Solar Energy Materials & Solar Cells. 2015. Vol. 132. P. 21–28.

80. Juskenas R., Niaura G., Mockus Z. et al. XRD studies of an electrochemically co-deposited Cu-Zn-Sn precursor and formation of a Cu2ZnSnSe4 absorber for thin-film solar cells // J. Alloys Compounds. 2016. Vol. 655. P. 281–289.

81. Li Y., Yuan T., Jiang L. et al. Growth and characterization of Cu2ZnSnS4 photovoltaic thin films by electrodeposition and sulfurization // J. Alloys Compd. 2014. Vol. 610. P. 331–336.

82. Li J., Ma T., Wei M. et al. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route // Appl. Surf. Sci. 2012. Vol. 258. P. 6261–6265.

83. He X., Shen H., Wang W. et al. Synthesis of Cu2ZnSnS4 films from co-electrodeposited Cu-Zn-Sn precursors and their microstructural and optical properties // Appl. Surf. Sci. 2013. Vol. 282. P. 765–769.

84. Chen Z., Han L., Wan L. et al. Cu2ZnSnSe4 thin films prepared by selenization of co-electroplated CuZn-Sn precursors // Appl. Surf. Sci. 2011. Vol. 257. P. 8490–8492.

85. Jeon J., Lee K. D., Oh L. S. et al. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition // Chem.Sus.Chem. 2014. Vol. 7. P. 1073–1077.

86. Gougaud C., Rai D., Delbos S. et al. Electrochemical studies of one-step electrodeposition of Cu-Zn-Sn layers from aqueous electrolytes for photovoltaic applications // J. Electrochem. Soc. 2013. Vol. 160. P. D485–D494.

87. Scragg J.J., Dale P.J., Peter L.M. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route // Thin solid films. 2009. Vol. 517. P. 2481–2484.

88. Scragg J.J., Berg D.M., Dale P.J., A 3.2% efficient kesterite device from electrodeposited stacked elemental layers // J. Electroanal. Chem. 2010. Vol. 646. P. 52–59.

89. Scragg J. J., Kubart T., Wätjen J.T. et al. Effects of back contact instability on Cu2ZnSnS4 devices and processes // Chem. Mater. 2013. Vol. 25. P. 3162–3171.

90. Ahmed S., Reuter K. B., Gunawan O., et al. A high efficiency electrodeposited Cu2ZnSnS4 solar cell // Adv. Energy Mater. 2012. Vol. 2. P. 253–259.

91. Guo L., Zhu Y., Gunawan O., et al. Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency // Prog. Photovollt: Res. Appl. 2014. Vol. 22. P. 58–68.

92. Lin Y., Ikeda S., Septina W. et al. Mechanistic aspects of preheating effects of electrodeposited metallic precursors on structural and photovoltaic properties of Cu2ZnSnS4 thin films // Sol. Energy Mater. Sol. Cells. 2014. Vol. 120. P. 218–225.

93. Mkawi E. M., Ibrahim K., Ali M. K. M. et al. Influence of precursor thin films stacking order on the properties of Cu2ZnSnS4 thin films fabricated by electrochemical deposition method // Superlattices Microstruct. 2014. Vol. 76. P. 339–348.

94. Meng M., Wan L., Zou P et al. Cu2ZnSnSe4 thin films prepared by selenization of one-step electrochemically deposited Cu-Zn-Sn-Se precursors // Appl. Surf. Sci. 2013. Vol. 273. P. 613–616.

95. Septina W., Ikeda S., Kyoraiseki A. et al. Singlestep electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure // Electrochim. Acta. 2013. Vol. 88. P. 436–442.

96. Jeon M., Tanaka Y., Shimizu T. et al. Formation and characterization of single-step electrodeposited Cu2ZnSnS4 thin films: effect of complexing agent volume // Energy Procedia. 2011. Vol. 10. P. 255–260.

97. Lee S.G., Kim J., Woo H.S. et al. Structural, morphological, compositional and optical properties of single step electrodeposited Cu2ZnSnS4 (CZTS) thin films for solar cell application // Curr. Appl. Phys. 2014. Vol. 14. P. 254–258.

98. Mkawi E.M., Ibrahim K., Ali M.K.M. et al. Influence of triangle wave pulse on the properties of Cu2ZnSnS4 thin films prepared by single step electrodeposition // Sol. Energy Mater. Sol. Cells. 2014. Vol. 130. P. 91–98.

99. Gurav K. V., Yun J. H., Pawar S. M. et al. Pulsed electrodeposited CZTS thin films: effect of duty cycle // Mater. Lett. 2013. Vol. 108. P. 316–319.

100. Gurav K. V., Kim Y. K., Shin S. W. et al. Pulsed electrodeposition of Cu2ZnSnS4 thin films: Effect of pulse potentials // Appl. Surf. Sci. 2015. Vol. 334. P. 192–196.

101. Ge J., Jiang J., Yang P. et al. A 5.5% efficient co-electrodeposited ZnO/CdS/Cu2ZnSnS4/Mo thin film solar cell // Sol. Energy Mater. Sol. Cells. 2014. Vol. 125. P. 20–26.

102. Chan C.P., Lam H., Surya C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids // Sol. Energy Mater. Sol. Cells. 2010. Vol. 94. P. 207– 211.

103. Fella C. M., Uhl A. R., Hammond C. et al. Formation mechanism of Cu2ZnSnSe4 absorber layers during selenization of solution deposited metal precursors // Journal of Alloys and Compounds. 2013. Vol. 567. P. 102–106.

104. Ilari G. M., Fella C. M., Ziegler C. et al. Cu2ZnSnSe4 solar cell absorbers spin-coated from amine-containing ether solutions // Sol. Energy Mater. Sol. Cells. 2012. Vol. 104. P. 125–130.

105. Fischereder A. Investigation of Cu2ZnSnS4 formation from metal salts and thioacetamide // Chemistry of Materials. 2010. Vol. 22. P. 3399–3406.

106. Schnabel T., Löw M., Ahlswede E. Vacuumfree preparation of 7.5% efficient Cu2ZnSn(S,Se)4 solar cells based on metal salt precursors // Sol. Energy Mater. Sol. Cells. 2013. Vol. 117. P. 324–328.


Для цитирования:


Башкиров С.А., Кондротас Р., Гременок В.Ф., Юшкенас Р.Л., Тюхов И.И. ТОНКИЕ ПЛЕНКИ Cu2ZnSn(S,Se)4 ДЛЯ ИСПОЛЬЗОВАНИЯ В СОЛНЕЧНЫХ ЭЛЕМЕНТАХ ТРЕТЬЕГО ПОКОЛЕНИЯ. Альтернативная энергетика и экология (ISJAEE). 2016;(15-18):31-53. https://doi.org/10.15518/isjaee.2016.15-18.031-053

For citation:


Bashkirov S.A., Kondrotas R., Gremenok V.F., Juskenas R., Tyukhov I.I. . Alternative Energy and Ecology (ISJAEE). 2016;(15-18):31-53. (In Russ.) https://doi.org/10.15518/isjaee.2016.15-18.031-053

Просмотров: 7


ISSN 1608-8298 (Print)