Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

LOW-TEMPERATURE WATER-VAPOR CONVERSION OF ETHANOL ON THE Ni/ZnO CATALYST IN A MICROCHANNEL REACTOR

https://doi.org/10.15518/isjaee.2016.15-18.112-121

Abstract

Water-vapor reforming of ethanol was studied for different composition of water-ethanol mixture at2500Cto4500Ctemperature in microchannel reactor on the Ni/ZnO catalyst deposited onto the walls and bottom of the microchannels. Microchannel reactor proved highly efficient for low-temperature water-vapor reforming of ethanol. It allows the microchannel reactor to be considered promising for hydrogen producing and application in portable fuel cells. 

About the Authors

V. V. Grinko
Institute of microelectronics technology and high purity materials RAS, Chernogolovka, Moscow reg.
Russian Federation
Valerij V. Grinko: Ph.D. (chemistry), Scientific Associate


V. S. Bezhok
Institute of microelectronics technology and high purity materials RAS, Chernogolovka, Moscow reg.
Russian Federation
Vladimir S. Bezhok: Scientific Associate


N. V. Lapin
Institute of microelectronics technology and high purity materials RAS, Chernogolovka, Moscow reg.
Russian Federation
Nikolai V. Lapin: Ph.D. (engineering), Major Scientific Associate


A. F. Vyatkin
Institute of microelectronics technology and high purity materials RAS, Chernogolovka, Moscow reg.
Russian Federation
Anatolij F. Vyatkin: D.Sc. (physics and mathematics), Professor, Deputy Director


References

1. Makarshin L.L., Parmon V.N. Mikrokanal’nye katalitičeskie sistemy dlâ vodorodnoj ènergetiki. Ž. Ros. him. ob-va im. D.I. Mendeleeva, 2006, vol. L, no. 6, pp. 19–25 (in Russ.).

2. Delsman E.R., de Croon M.H.J.M., Pierik A., Kramer G.J., Cobden P.D., Hofmann C., Cominos V., Schouten J.C. Design and operation of a preferential oxidation microdevice for a portable fuel processo. Chem. Eng. Sci., 2004, vol. 59, no. 22–23, pp. 4795– 4799 (in Eng.).

3. Llorca J., Casanovas A., Trifonov T., Rodriguez A., Alcubill R. First use of macroporous silicon loaded with catalyst filmfor a chemical reaction: A microreformer for producing hydrogenfrom ethanol steam reforming. J.of Catalysis, 2008, vol. 255, pp. 228– 233 (in Eng.).

4. Zhou W., Deng W., Lu L., Zhang J. Laser micromilling of microchannel on copper sheet as catalyst sup port used in microreactor for hydrogen production. Int. J. of hydrogen energy, 2014, vol. 39, no. 10, pp. 4884– 4894 (in Eng).

5. Mei D., Qian M., Liu B., Jin B., Yao Z., Chen Z. A micro-reactor with micro-pin-fin arrays for hydrogen production viamethanol steam reforming. J. Power Sources, 2012, vol. 205, pp. 367–376 (in Eng.).

6. Bruschi Y.M., Lopez E., Schbib N.S. et al. Theoretical study of the ethanol steam reforming in a parallelchannel reactor. Int. J. of hydrogen energy, 2012, vol. 37, pp. 1–8 (in Eng.).

7. HaoY., Du X., Yang L., Shen Y., Yang Y. Numerical simulation of configuration and catalyst-layereffects on micro-channel steam reforming of methanol. Int. J. of hydrogen energy, 2011, vol. 36, pp. 15611– 15621 (in Eng.).

8. Uriz I., Arzamendia G., López E., Llorca J., GandíaL.M.Computational fluid dynamics simulation of ethanol steam reformingin catalytic wall microchannels. Chem. Eng. J., 2011, vol. 167, pp. 603–609 (in Eng.).

9. Makarshin L.L., Andreev D.V., Gribovskiy A.G., ParmonV.N. Influence of the microchannel plates design on the efficiency of the methanolsteam reforming in microreactors. Int. J. of hydrogen energy, 2007, vol. 32, pp. 3864–3869 (in Eng.).

10. Moharana M.K., Peela N.R., Khandekar S., Kunzru D. Distributed hydrogen production from ethanol in a microfuel processor:Issues and challenges. Renewable and Sustainable Energy Reviews, 2011, vol. 15, pp. 524–533 (in Eng.).

11. Haryanto A., Fernando S., Murali N., Adhikari S. Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy & Fuel, 2005, vol. 19, no. 5, pp. 2098–2106 (in Eng.).

12. Vaidya P.D., Rodrigues A.E. Insight into steam reforming of ethanol to producehydrogen for fuel cells. Chem. Eng. J., 2006, vol. 117, no. 1. pp. 39–49 (in Eng.).

13. Rabenstein G., Hacker V. Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidationand combined auto-thermal reforming: A thermodynamic analysis. J. of Power Sources, 2008, vol. 185, no. 2, pp. 1293–1304 (in Eng.).

14. Palma V., CastaldoF., Ciambelli P., Iaquaniello G. CeO2-supported Pt/Ni catalyst for the renewable and clean H2 production via ethanol steam reforming. Applied Catalysis B: Environmental, 2014, vol. 145, pp. 73–84 (in Eng.).

15. Koh A.C.W, Chen L., Leong W.K. et al. Ethanol steam reforming over supported ruthenium andruthenium–platinum catalysts: Comparison of organometallicclusters and inorganic salts as catalyst precursors. Int. J. of hydrogen energy, 2009, vol. 34, pp. 5691–5703 (in Eng.).

16. Cai W., Wang F., Van Veen A., Descorme C., Schuurman Y., Shen W., Mirodatos C. Hydrogen production from ethanol steam reformingin a micro-channel reactor. Int. J. of hydrogen energy, 2010, vol. 35, pp. 1152–1159 (in Eng.).

17. Gorke O., Pfeifer P., Schubert K. Kinetic study of ethanol reforming in a microreactor. Applied Catalysis A: General, 2009, vol. 360, pp. 232–241 (in Eng.).

18. Peela N.R., Mubayi A., Kunzru D. Steam reforming of ethanol over Rh/CeO2/Al2O3 catalystsin a microchannel reactor. Chem. Eng. J., 2011, vol. 167, pp. 578–587 (in Eng.).

19. Abdelkader A., Daly H., Saih Y., Morgan K., Mohamed M.A., Halawy S.A., Hardacre C. Steam reforming of ethanol over Co3O4-Fe2O3 mixed oxides. Int. J. of hydrogen energy, 2013, vol. 38, pp. 1–13 (in Eng.).

20. Lee Y-K., Kim K-S., Ahn J-G., et al. Hydrogen production from ethanol over Co/ZnO catalyst ina multilayered reformer. Int. J. of hydrogen energy, 2010, vol. 35, pp. 1147–1151 (in Eng.).

21. Wang H., Zhang L., Yuan M., Xu T., Liu Y. Steam reforming of ethanol over Ni/Ce0.7Pr0.3O2 catalyst. Journal of Rare Earths, 2012, vol. 30, no. 7, pp. 670– 675 (in Eng.).

22. Trane-Restrup R., Dahl S.,Jensen A.D. Steam reforming of ethanol: Effects of support and additives on Ni-based catalysts. Int. J. of hydrogen energy, 2013, vol. 38, pp. 15105–15118 (in Eng.).

23. Sayas S., ChicaA. Furfural steam reforming over Ni-based catalysts. Influence of Ni incorporation method. Int. J. Hydrogen Energy, 2014, vol. 39, pp. 5234– 5241 (in Eng.).

24. Casanovas A., Domınguez M., Ledesma C., Lo´pez E., Llorca J. Catalytic walls and micro-devices for generating hydrogen by low temperature steam reforming of ethanol. Catalysis Today, 2009, vol. 143, pp. 32–37 (in Eng.).

25. Domínguez M., Taboada E., Molins E., Llorca J. Ethanol steam reforming at very low temperature over cobalt talc ina membrane reactor. Catalysis Today, 2012, vol. 193, pp. 101–106 (in Eng.).

26. Casanovas A., Llorca J., Homs N., Fierro J.L.G., Piscina P.R. Ethanol reforming processes over ZnOsupported palladiumcatalysts: Effect of alloy formation. J. of Molecular Catalysis A: Chemical, 2006, vol. 250, pp. 44–49 (in Eng.).

27. Ciambelli P., Palma V., Ruggiero A. Low temperature catalytic steam reforming of ethanol. 1. The effect of the support on the activity and stability of Pt catalysts. Applied Catalysis B: Environmental, 2010, vol. 96, no. 1–2, pp. 18–27 (in Eng.).

28. Ciambelli P., Palma V., Ruggiero A. Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 2010, vol. 96, no. 1–2, pp. 190–197 (in Eng.).

29. Lovón A. S.P., Lovón-Quintana J. J., Almerindo G.I., Valença G. P. et al. Preparation, structural characterization and catalytic properties of Co/CeO2 catalysts for the steam reforming of ethanol and hydrogen production. J. of Power Sources, 2012, vol. 216, pp. 281–289 (in Eng.).

30. Palma V., Castaldo P., Ciambelli P., Iaquaniello G., Capitani G. On the activity of bimetallic catalysts for ethanol steam reforming. Int. J. Hydrogen Energy, 2013, vol. 38, no. 16, pp. 6633–6645 (in Eng.).

31. Chica A., Sayas S. Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2 zeolite. Catalysis Today, 2009, vol. 146, no. 1–2, pp. 37–43 (in Eng.).

32. Homs N., Llorca J., Piscina P. Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts: The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts. Catalysis Today, 2006, vol. 116, no. 3, pp. 361–366 (in Eng.).

33. Garcia V. M., Lopez E., Serra M., Llorca J. Dynamic modeling of a three-stage low-temperature ethanol reformer for fuel cell application. J. of Power Sources, 2009., vol. 192, no. 1, pp. 208–215 (in Eng.).

34. Da Costa-Serra J.F., Guil-Lopez R., Chica A. Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. Int. J. Hydrogen Energy, 2010, vol. 35, no. 13, pp. 6709–6715 (in Eng.).

35. Casanovas A., Leitenburg C., Trovarelli A., Llorca J. Ethanol steam reforming and water gas shift reaction over Co–Mn/ZnO catalysts. Chemical Engineering Journal, 2009., vol. 154, no. 1–3, pp. 267–273 (in Eng.).

36. Casanovas A., Roig M., Leitenburg C., Trovarelli A., Llorca J. Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. Int. J. of Hydrogen Energy, 2010, vol. 35, no. 15. P. 7690–7698 (in Eng.).

37. Lapin N.V., Redkin A.N., Bezhok V.S., Vyatkin A.F. Polučenie vodoroda katalitičeskim pirolizom ètanola na nikelevom katalizatore. Žurnal fizičeskoj himii, 2009, vol. 83, no. 10, pp. 1–5 (in Russ.).

38. Lapin N.V., Bezhok V.S. Nizkotemperaturnyj reforming ètanola na nikel’-mednom katalizatore. Žurnal prikladnoj himii, 2011, vol. 84, no. 6, pp. 983–987 (in Russ.).

39. Lapin N.V., Bezhok V.S., Vyatkin A.F. Polučenie vodoroda dlâ pitaniâ toplivnyh èlementov nizko-temperaturnoj konversiej ètanola na katalizatorah Ni/ZnO i Ni-Cu/ZnO. Žurnal prikladnoj himii, 2014, vol. 87, no. 5, pp. 619–623 (in Russ.).

40. Lapin N.V., Bezhok V.S., Grinko V.V., Vyatkin A.F. Vybor nositelâ katalizatora dlâ sniženiâ soderžaniâ monookisi ugleroda pri reforminge ètanola. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015, no. 21, pp. 216–221 (in Russ.).

41. Zhai X., Cheng Y., Zhang Z., Jin Y., Cheng Y. Steam reforming of methane over Ni catalyst in microchannel reactor. Int. J. of Hydrogen Energy, 2011, vol. 36, pp. 7105–7113 (in Eng.).

42. Chen Y., Xu H., Wang Y., XiongG. Hydrogen production from the steam reforming of liquidhydrocarbons in membrane reactor. Catalysis Today, 2006, vol. 118, pp. 136–143 (in Eng.).

43. Hwang K-R., LeeCh-B., RyiSh-K., Lee S-W., Park J-S.A multi-membrane reformer for the direct productionof hydrogen via a steam-reforming reaction of methane. Int. J. of Hydrogen Energy, 2012, vol. 37, pp. 6601–6607 (in Eng.).

44. Borgognoni F., Tosti S., Vadrucci M., SantucciA.Combined methane and ethanol reforming for pure hydrogenproduction through Pd-based membranes. Int. J. of Hydrogen Energy, 2012, vol. 37, pp. 1–9 (in Eng.).


Review

For citations:


Grinko V.V., Bezhok V.S., Lapin N.V., Vyatkin A.F. LOW-TEMPERATURE WATER-VAPOR CONVERSION OF ETHANOL ON THE Ni/ZnO CATALYST IN A MICROCHANNEL REACTOR. Alternative Energy and Ecology (ISJAEE). 2016;(15-18):112-121. (In Russ.) https://doi.org/10.15518/isjaee.2016.15-18.112-121

Views: 942


ISSN 1608-8298 (Print)