

SYNTHESIS OF 3D CARBON-GRAPHENE COMPOSITES
https://doi.org/10.15518/isjaee.2016.23-24.088-097
Abstract
The paper describes the preparation and study of carbon-graphene composites on the basis of graphene-like material (GLM) and carbon nanofibers (CNF). CNF/GLM composites were prepared through pyrolysis of ethylene on a Ni-containing catalyst, supported on the surface of the GLM. Ni-containing catalysts were prepared by two methods: (1) hydrothermal treatment of aqueous suspension of graphite oxide and nickel acetate, followed by heating in a hydrogen stream; (2) hydrogen reduction of pre-formed Ni(CH3COO)2/GO composite. CNF synthesized on the surface of GLM had a diameter of 10 nm and a length from 10 to 300 nm at the synthesis duration from 1 to 60 min. The received material can be used as a carrier of catalysts for organic synthesis, reversible sorption of hydrogen and the electrochemical sources of current.
About the Authors
A. A. ArbuzovRussian Federation
Ph.D. (chemistry), Researcher
A. A. Volodin
Russian Federation
Ph.D. (chemistry), Researcher
B. P. Tarasov
Russian Federation
Ph.D. (chemistry), Head of Laboratory
References
1. Tarasov B.P., Maehlen J.P., Lototsky M.V., Muradyan V.E., Yartys V.A. Hydrogen sorption properties of arc generated single-wall carbon nanotubes. Journal of Alloys and Compounds. 2003;(356–357):510–514 (in Eng.).
2. Tarasov B.P., Muradyan V.E., Volodin A.A. Sintez, svojstva i primery ispol’zovaniâ uglerodnyh nanomaterialov. Izvestiâ AN, Ceriâ himičeskaâ. 2011;(7):1237–1249 (in Russ.).
3. Lukashev R.V., Klyamkin S.N., Tarasov B.P. Polučenie i svojstva vodorod-akkumuliruûŝih kompozitov v sisteme MgH2–C. Neorganičeskie materialy. 2006;(42/7):803–810 (in Russ.).
4. Tarasov B.P. Metal-hydride accumulators and generators of hydrogen for feeding fuel cells. International Journal of Hydrogen Energy. 2011;(36/1):1196– 1199 (in Eng.).
5. Tkachev S.V., Buslaeva E.Yu., Gubin S.P. Grafen – novyj uglerodnyj nanomaterial. Neorganičeskie materialy. 2011;(47):5–14 (in Russ.).
6. Obraztsov A.N., Obraztsova E.A., Tyurnina A.V., Zolotukhin A.A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon. 2007;(45):2017–2021 (in Eng.).
7. Agnoli S., Granozzi G. Second generation graphene: Opportunities and challenges for surface science. Surface Science. 2013;(609):1–5 (in Eng.).
8. Li F., Jiang X., Zhao J., Zhang Sh. Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy. 2015;(16)488–515 (in Eng.).
9. Tjong S.Ch. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Materials Science and Engineering R. 2013;(74):281–350 (in Eng.).
10. Navalon S., Dhakshinamoorthy A., Alvaro M., Garcia H. Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews. 2016;(312):99–148 (in Eng.).
11. Axet M.R., Dechy-Cabaret O., Durand J., Gouygou M., Serp P. Coordination chemistry on carbon surfaces. Coordination Chemistry Reviews. 2016;(308):236–345 (in Eng.).
12. Antolini E. Graphene as a new carbon support for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental. 2012;(123–124):52– 68 (in Eng.).
13. Wang H., Robinson J.T., Diankov G., Dai H. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010;(132):3270–3271 (in Eng.).
14. Kushch S.D., Kuuynko N.S., Muradyan V.E., Tarasov B.P. Polučenie katalizatorov gidrirovaniâ sovmestnym vosstanovleniem oksida grafita i platiny (IV). Žurnal fizičeskoj himii. 2013;(87/11):1824–1830 (in Russ.).
15. Arbuzov A.A., Klyuev M.V., Kalmykov P.A., Tarasov B.P., Magdalinova N.A., Muradyan V.E. Palladijsoderžaŝij katalizator gidrirovaniâ i sposob ego polučeniâ. Patent RF МPК. 8: B01J 23/44, B01J 21/18, B01J 37/18 // 2015, bul. no. 15, 6 p. (in Russ.).
16. Klyuev M.V., Arbuzov A.A., Magdalinova N.A., Kalmykov P.A., Tarasov B.P. Palladijsoderžaŝij grafenopodobnyj material: sintez i katalitičeskaâ aktivnost’. Žurnal fizičeskoj himii. 2016;(90/9):1331– 1335 (in Russ.).
17. Bai J., Zhu Q., Lu Zh., Dong H., Yu J., Dong L. Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions. Int. J. Hydrogen Energy. 2013;(38):1413– 1418 (in Eng.).
18. Tarasov B.P., Muradyan V.E., Volodin A.A. Sintez, svojstva i primery ispol’zovaniâ uglerodnyh nanomaterialov. Izvestiâ AN. Seriâ himičeskaâ. 2011;(7):1237–1249 (in Russ.).
19. Tang Q., Sun M., Yu Sh., Wang G. Preparation and supercapaci-tance performance of manganese oxidenanosheets/graphene/carbon nanotubes ternary composite film. Electrochimica Acta. 2014;(125):488– 496 (in Eng.).
20. Wang Y.-Sh., Yang Sh.-Y., Li Sh.-M., Tien H.-W., Hsiao Sh.-T., Liao W.-H., Liu Ch.-H., Chang K.-H., Ma Ch.-Ch. M., Hu Ch.-Ch. Three-dimensionally porous graphene–carbon nanotube composite-supported Pt-Ru catalysts with an ultrahigh electrocatalytic activity for methanol oxidation. Electrochimica Acta. 2013;(87):261–269 (in Eng.).
21. Wang Ch., Cao M., Wang P., Ao Y., Hou J., Qian J. Preparation of graphene–carbon nanotube–TiO2 composites withenhanced photocatalytic activity for the removal of dye and Cr (VI). Appl. Cat. A: General. 2014;(473):83–89 (in Eng.).
22. Chen X., Chen X., Zhang F., Yang Z., Huang Sh. One-pot hydro-thermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. Journal of Power Sources. 2013;(243):555–564 (in Eng.).
23. Tai Z., Yana X., Langa J., Xue Q. Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. Journal of Power Sources. 2012;(199):373–378 (in Eng.).
24. Arbuzov A.A., Mozhzhuhin S.A., Volodin A.A., Fursikov P.V., Tarasov B.P. Sintez grafenopodobnyh nanostruktur i formirovanie na ih osnove katalizatorov i vodorod-akkumuliruûŝih kompozitov. Izvestiâ AN, seriâ himičeskaâ. 2016(8):1893–1901 (in Russ.).
25. Arbuzov A.A., Mozhzhuhin S.A., Tarasov B.P. Kompozity vosstanovlennogo oksida grafita i nikelâ. International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2016(3–4):24–34 (in Russ.).
Review
For citations:
Arbuzov A.A., Volodin A.A., Tarasov B.P. SYNTHESIS OF 3D CARBON-GRAPHENE COMPOSITES. Alternative Energy and Ecology (ISJAEE). 2016;(23-24):88-97. (In Russ.) https://doi.org/10.15518/isjaee.2016.23-24.088-097