Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

GENERAL PATTERNS OF THERMAL DECOMPOSITION OF TRANSITION METALS DIHYDRIDES IN MEDIUM WITH THE LOW PARTIAL HYDROGEN PRESSURE

https://doi.org/10.15518/isjaee.2017.01-03.046-060

Abstract

The paper states the results of calorimetric studies of thermal dissociation of titanium, zirconium, magnesium, and palladium hydrides performed in the recent years, and also demonstrates the multiplet character of thermal dissociation, which is specific to all these hydrides. Moreover, the paper shows good correlation between the course of curves of the differential scanning calorimetry and results of thermogravitation measurements.

In addition, the paper establishes the discrete nature of decomposition processes, and proposes the sequence of mechanisms that occur upon heating of transition metals dihydrides in the medium with low partial pressure of hydrogen: reconstruction in a hydride phase; destruction of metal-hydrogen bonds with the formation of supersaturated by hydrogen solid solution; diffusion of hydrogen to the solid phase-environment interface; hydrogen molization at hydrogen output from the solid phase.

About the Authors

L. V. Spivak
Perm State National Research University
Russian Federation

Lev Spivak - D.Sc. (physics  and  mathematics),  Academician of Academy of Natural Sciences, Professor of Solid State Physics Department of PSNRU; Honored Worker of Higher School.

15 Bukirev str., Perm, 614990, tel.: +7(342)239-63-83; e-mail: lspivak@psu.ru



N. E. Shchepina
Natural Sciences Institute of Perm State University
Russian Federation

Nadezhda Shchepina - D.Sc. (chemistry),  Senior  Scientist,  Head  of the Laboratory of Radiochemistry.

4 Genkel str., Perm, 614990, tel.: +7(342)239-67-21; e-mail: neshchepina@mail.ru

 



M. A. Dуshluyk
Perm State National Research Technical University
Russian Federation

Maria Dуshluyk - Postgraduate. 

29a Komsomolsky ave., Perm, 614000, tel.: +7(963)875-77-99; e-mail: m.kulikova_89@mail.ru

 



References

1. Spivak L.V. Termičeskaâ dekompoziciâ gidrida titana. International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2015;(21);84 89 (in Russ.).

2. Gidridy metallov / Ed. G. Muller. Moscow: Atomizdat Publ., 1973, 431 p (in Russ.).

3. Vodorod v metallah / Ed. G. Alefeld, I. Felkl. Moscow: Mir Publ., 1981, vol. 1, 475 p (in Russ.).

4. Andrievsky P.A. Materialovedenie gidridov. Moscow: Metallurgiâ Publ., 1986, 127 p (in Russ.).

5. Spivak L.V., Shchepina N.E. Termičeskaâ dekompoziciâ gidrida cirkoniâ v srede s nizkim parcial’nym davleniem vodoroda. International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2014;(16):39 45 (in Russ.).

6. Doluhanyan S.K., Aleksanyan A.G., TerGalastyan O.P. et al. Osobennosti formirovaniâ splavov i ih gidridov v sisteme Ti-Zr-H. Himičeskaâ fizika. 2007;(26/11):36 41 (in Russ.).

7. Doluhanyan S.K. Aleksanyan A.G., Shehtman V.Sh. et al. Novyj metod polučeniâ splavov na osnove perehodnyh metallov. Himičeskij žurnal Armenii. 2007;(60/4):545 559 (in Russ.).

8. Uèndlandt U. Termičeskie metody analiza. Moscow: Mir Publ., 1978, 526 p (in Russ.).

9. Spivak L.V. Kalorimetričeskie èffekty pri termičeskoj destrukcii gidrida titana. International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2011;(6):25 31 (in Russ.).

10. Spivak L.V., Shchepina N.E. Termičeskaâ dekompoziciâ gidrida magniâ v srede s nizkim parcial’nym davleniem vodoroda. International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2013;(8):27 30 (in Russ.).

11. Zuttel A., Wenger, S. Rensch et al. LiBH4 a new hydrogen storage material. J. Power Sources. 2003;(118):17 (in Eng.).

12. Metijasevic-Lux B., J. Banhart, S. Fiechter et al. Modification of titanium hydride for improved alumi num foam manufacture. Acta Materialia. 2006;(54):1887–1900 (in Eng.).

13. Lindler D.L. Mechanism for isothermal decomposition of iron titanium hydride. Inorganic Chemistry. 1978;(12/1-2):3721 3722 (in Eng.).

14. Kireev V.A. Kurs fizičeskoj himii. Moscow: Himiâ Publ., 1975, 776 p. (in Russ.).

15. Karapetyants M.H. Himičeskaâ termodinamika. Moscow: Himiâ Publ., 1975, 109 p. (in Russ.).

16. Glinka N.L. Obŝaâ himiâ. 30-e izd. Moscow: Integral-Press Publ., 2003, 728 p. (in Russ.).

17. Klyamkin S.N. Metallogidridnye kompozicii na osnove magniâ kak materialy dlâ akkumulirovaniâ vodoroda. Ros. Him. Ž. 2006;(1/6):49 55 (in Russ.).

18. Novák P. [et al.] Structure and Properties of Magnesium-Based Hydrogen Storage Alloys. Materials Science Forum. 2007;(567 568):217 220 (in Eng.).

19. Beattie S.D., Setthanan U., McGrady G.S. Thermal desorption of hydrogen from magnesium hydride (MgH2): An insitu microscopy study by environmental SEM and TEM. International journal of hydrogen energy. 2011;(36):6014 6021 (in Eng.).

20. Matsumoto I. [et al.]. Decomposition of Magnesium Hydride Fiber Observed Using TEM and In-Situ AFMю Materials Transactions. 2011;(52/3):481 485 (in Eng.).

21. Spivak L.V. Kalorimetričeskie èffekty pri nagreve splavov sistemy Pd-H. International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2010;(7):103 110 (in Russ.).

22. Spivak L.V., Kulikova M.A. Kalorimetričeskie èffekty pri termičeskoj destrukcii gidrida titana. International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2011;(6):10 14 (in Russ.).

23. Spivak L.V. Dekompoziciâ splavov sistemy Pd-H pri nagreve. International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2008;(4):99–105 (in Russ.).

24. Spivak L.V. Kalorimetričeskie èffekty pri nagreve splavov sistemy Pd-H". International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2010;(7):103 110 (in Russ.).

25. Stern A., Resnik A., Shaltiel D. Thermal desorption spectra of PdHx system (0<x<0.9) in different samples: a powder, a foil, a wire. Elec. Str. and Prop. Hydrogen Alloys. Prec. NATO Int. Symp. Richmond 25, March. 1982, pp. 55 60 (in Eng.).

26. Harada S., Tamaki S. EMF Measurements on Hydrogenated Palladium Alloys and Their Thermodynamic Properties. J. Phys. Soc. Jpn. 1985;(54):1642 1647 (in Eng.).

27. Revkevich G.P., Sveshnikov S.V., Katsnelson A.A. Stabilizaciâ α-fazy v sisteme palladij-vodorod. Izvestiâ vuzov. Fizika. 1985;(5):102 104 (in Russ.).

28. Yoshinari O., Koiwa M. Low-frequency internal friction study of Pd-H alloys. J. Phys. F: Met. Phys. 1987; (17):59 74 (in Eng.).

29. Spivak L.V. Sinergičeskie èffekty deformacionnogo otklika v termodinamičeski otkrytyh sistemah metall-vodorod. UFN. 2008;(178/9):897 922 (in Russ.).

30. Berlouis L.E.A. [et al.]. The decomposition of electrochemically loaded palladium hydride: a thermal analysis study. Journal of alloys and compounds.1997;(253 254):207 209 (in Eng.).

31. Goltsov V.A., Artemenko Yu.A. Gidridnye prevraŝeniâ i fazovyj naklep. FMM. 1991;(2):181 188 (in Russ.).

32. Harada S. Change of bonding energies in hydrogenated Pd, Ni and FeCC Fe-Ni alloys. Journal of Physics F: Metal Physics. 1983;(13/3):607 617 (in Eng.).

33. Kufudakis A., Cermac J. Reversible and irreversible diffusion – elastic deformation effects resulting from absorption and desorption of hydrogen by palladium. Surface Technol. 1982;(18/1):57 66 (in Eng.).

34. Andreasen G. [et al.]. Hydrogen-induced deformations of metals followed by in situ scanning tunneling microscopy. palladium electrolytic hydrogen charging and discharging in alkaline solution. Langmuir. 1999;(15/1):1–5 (in Eng.).

35. Vodorod v metallah / Ed. G. Alefeld, I. Felkl. Moscow: Mir Publ., 1981, vol. 2, 430 p. (in Russ.).

36. Zuchner H., Schoneich H.G. Improvement of electrical method for studying the diffusion and solubility of hydrogen in metals. J. Less-Common Metals. 1984;(101):363 372 (in Eng.).

37. Stepura E., Rosenband V., Gany A. Investigation of high temperature self-propagating combustion synthesis of titanium hydride. Third European Combustion Meeting; ECM. 2007. China. Crete. Grece, p. 16 (in Eng.).

38. Martin M. [et al.]. Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds. 1996;(238):193 201 (in Eng.).

39. Stern A., Resnik A., Shaltiel D. Thermal desorption spectra of the PdHx system in a powder form. Journal of Physics F: Metal Physics. 1984;(14/7):1625 1641 (in Eng.).

40. Flanagan T.B., Da Wang, S. Luo Thermodynamics of H in disordered Pd-Ag alloys from calorimetric and equilibrium pressure-composition-temperature measurements. Journal of Physical Chemistry B. 2007;(111/36):10723 10735 (in Eng.).


Review

For citations:


Spivak L.V., Shchepina N.E., Dуshluyk M.A. GENERAL PATTERNS OF THERMAL DECOMPOSITION OF TRANSITION METALS DIHYDRIDES IN MEDIUM WITH THE LOW PARTIAL HYDROGEN PRESSURE. Alternative Energy and Ecology (ISJAEE). 2017;(1-3):46-60. (In Russ.) https://doi.org/10.15518/isjaee.2017.01-03.046-060

Views: 492


ISSN 1608-8298 (Print)