Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search

THE SYNTHESIS PROBLEM OF THERMOELECTRIC COMPOSITES BASED ON COPPER OXIDES

Abstract

The possibility of an electrical conductivity independent optimization of the material while maintaining high thermopower. Thermoelectric material copper oxide with conductive multilayer carbon nanotubes selected as perspective. Mortar technology for thermoelectric composite structures with nanoscale elements used.

About the Authors

Yu. V. Panin
Voronezh State Technical University
Russian Federation

Candidate of Technical Sciences, Senior Research Fellow of Solid State
Physics Department



S. Yu. Pankov
Voronezh State Technical University
Russian Federation
post-graduate student


References

1. Ševel'kov А.V. Himičeskie aspekty sozdaniâ termoèlektričeskih materialov // Uspehi himii. 2008. T. 77, № 1. S. 3–21.

2. Nolas G.S., Sharp J., Goldsmid H.J. Thermoelectrics: Basic Principles and New Materials Developents. New York: Springer-Verlag, 2001.

3. Gojny F.N., Wichmann M.H.G., Fiedler B., Kinloch J.A., Bauhofer W., Windle A.H., Schulte K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites // Polymer. 2006. No. 47. P. 2036-2045.

4. Moisala A., Li O., Kinloch J.A., Windle A.H. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites // Compos. Sci. Technol. 2006. No. 66, P. 1285-1288.

5. Lange Fred F. Powder Processing Science and Technology for Increased Reliability // J. Am. Ceram. Soc. 1989. Vol. 72, No. 1. P. 3-15.

6. Portnoj K.I., Babič B.N. Dispersno-upročnennye materialy. M.: Metallurgiâ, 1974.

7. Adair J.H., Kumar R., Antolino. N Colloidal Lessons Learned for Dispersion of Nanosize Particulate Suspensions // Proceedings of the World Academy of Ceramics, Techna Group SrI, Faenza, Italy. 2005. P. 93-145.

8. Lange Fred F. Powder Processing Science and Technology for Increased Reliability // J. Am. Ceram. Soc. 1989. Vol. 72, No. 1. P. 3-15.

9. Sakka V. Fabrication of highly microstructure controlled ceramics by novel colloidal processing // J. Ceram. Soc. Japan. 2006. Vol. 114, No. 5. P. 371-376.

10. Prilepo Û.P., Makagonov V.А., Soldatenko S.А. Nanouglerodnyj napolnitel' dlâ modifikacii termoèlektričeskih materialov // Аl'ternativnaâ ènergetika i èkologiâ – ISJAEE. 2011. № 7. S. 64-67.

11. Panin Û.V., Prilepo Û.P., Torba Ž.N., Čujko А.G. Issledovanie èlektričeskoj provodimosti v spirtovyh suspenziâh mnogoslojnyh uglerodnyh nanotrubok // Vestnik VGTU. 2012. T. 8, № 2. S. 70-72.

12. Ham H.T., Choi Y.S. and Chung I.J. An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters // Colloid Interfase Sci. 2005. Vol. 286. P. 216-223.

13. Ausman K.D., Piner R., Lourie O., Ruoff R.R. Organic solvent dispersions of SWNTs: toward solutions of pristine nanotubes // J. Phys. Chem. B. 2000. Vol. 104. P. 8911-8915.

14. Grady B.P. Recent developments concerning the dispersion of carbon nanotubes in polymers // Macromol. Rapid Commun. 2010. Vol. 31. P. 247-257.

15. Zhao Y.-L., Stoddart Y.F. Noncovalent Functionalization of Single-Walled Carbon Nanotubes // Acc. Chem. Res. 2009. Vol. 42. P. 1161−1171.

16. Yin Z.X., Pramoda K.P., Xu G.O., Suat H.G. Poly(vinylidenefluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites // Mater. Res. Bull. 2002. Vol. 37. P. 271-278.

17. Datsyuk V., Kalyva M., Papagelis K., Parthenios J., Tasis D., Siokou A., Kallitsis I., Galiotis C. Chemical oxidation of multiwalled carbon nanotubes // Carbon. 2008. Vol. 46. P. 833-840.

18. Wang Y., Deng W., Liu X., Wang X. Electrochemical hydrogen storage properties of ball-milled multi-wall carbon nanotubes // International Journal of Hydrogen Energy. 2009. Vol. 34. P. 1437-1443.

19. Lee J., Jeong T., Heo J., Park S.-H., Lee D., Park J.-B., Han H., Kwon Y., Kovalev I., Yoon S.M., Choi J.-Y., Jin Y., Kirn J.M., An K.H., Lee Y.H., Yu S. Short carbon nanotubes produced by cryogenic crushing // Carbon. 2006. Vol. 44. P. 2984-2989.

20. Panin Û.V., Pankov S.Û., Šuvaev А.S. Issledovanie èlektričeskoj provodimosti i plotnosti v spirtovyh suspenziâh uglerodnyh volokon, polučennyh mehanoaktivaciej // Vestnik VGTU. 2014. T. 10, № 2. S. 64-66.

21. Koršunov А.V., Il'in А.P. Osobennosti okisleniâ nanoporoškov medi pri nagrevanii v vozduhe // Izvestiâ Tomskogo politehničeskogo universiteta. 2008. T. 313, № 3. S. 5-13.

22. Meždunarodnyj standart ISO 13321.

23. Ueda K., Bisson J.F., Yadi H., Takaichi K., Kamiskii A.A. Scalable ceramic lasers // Laser Phys. 2005. Vol. 7, No. 15. P. 927–938.

24. Dric M.E. Dvojnye i mnogokomponentnye sistemy na osnove medi. M.: Nauka, 1976.


Review

For citations:


Panin Yu.V., Pankov S.Yu. THE SYNTHESIS PROBLEM OF THERMOELECTRIC COMPOSITES BASED ON COPPER OXIDES. Alternative Energy and Ecology (ISJAEE). 2015;(3):40-48. (In Russ.)

Views: 400


ISSN 1608-8298 (Print)