Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

MATHEMATICAL MODELING OF TEMPERATURE EFFECT ON THE FAN CHART OF MAGNETOABSORPTION SPECTRUM IN SEMICONDUCTORS

https://doi.org/10.15518/isjaee.2019.01-03.104-115

Abstract

The article considers the oscillations of interband magneto-optical absorption in semiconductors with the Kane dispersion law. We have compared the changes in oscillations of the joint density of states with respect to the photon energy for different Landau levels in parabolic and non-parabolic zones. An analytical expression is obtained for the oscillation of the combined density of states in narrow-gap semiconductors. We have calculated the dependence of the maximum photon energy on the magnetic field at different temperatures. A theoretical study of the band structure showed that the magnetoabsorption oscillations decrease with an increase in temperature, and the photon energies nonlinearly depend on a strong magnetic field. The article proposes a simple method for calculating the oscillation of joint density of states in a quantizing magnetic field with the non-quadratic dispersion law. The temperature dependence of the oscillations joint density of states in semiconductors with non-parabolic dispersion law is obtained. Moreover, the article studies the temperature dependence of the band gap in a strong magnetic field with the non-quadratic dispersion law. The method is applied to the research of the magnetic absorption in narrow-gap semiconductors with nonparabolic dispersion law. It is shown that as the temperature increases, Landau levels are washed away due to thermal broadening and density of states turns into a density of states without a magnetic field. Using the mathematical model, the temperature dependence of the density distribution of energy states in strong magnetic fields is considered. It is shown that the continuous spectrum of the density of states, measured at the temperature of liquid nitrogen, at low temperatures turns into discrete Landau levels. Mathematical modeling of processes using experimental values of the continuous spectrum of the density of states makes it possible to calculate discrete Landau levels. We have created the three-dimensional fan chart of magneto optical oscillations of semiconductors with considering for the joint density of energy states. For a nonquadratic dispersion law, the maximum frequency of the absorbed light and the width of the forbidden band are shown to depend nonlinearly on the magnetic field. Modeling the temperature  dependence allowed us to determine the Landau levels in semiconductors in a wide temperature spectrum. Using the proposed model, the experimental results obtained for narrow-gap semiconductors are analyzed. The theoretical results are compared with experimental results.

About the Authors

G. Gulyamov
Namangan Engineering-Construction Institute
Uzbekistan

D.Sc. in Physics and Mathematics, Professor of Physics chair,

12 I. Karimov Av, Namangan, 160103, Uzbekistan
tel.: (0369) 234-15-23, (+99890)741-46-56; fax: (069) 234-15-23



U. I. Erkaboev
Namangan Engineering-Technological Institute
Uzbekistan

Ph.D. in Physics and Mathematics, Associate Professor at Physics Chair

7 Kosonsoy Str., Namangan, 160115, Uzbekistan
tel.: (0369) 225-10-07, (+99890)741-46-56; fax: (069) 232-97-79



A. G. Gulyamov
Physico-Technical Institute of the Academy of Sciences of the Republic of Uzbekistan
Uzbekistan

D.Sc. in Physics and Mathematics, Senior Researcher at the Laboratory “Physics of Semiconductors and Solid State Theory”

2 “B”, G. Mavlyanov Str., Tashkent, 100084, Uzbekistan
tel.: (+99871) 233-12-71, (+99893)499-79-16; fax: (+99871) 235-42-91



References

1. [1] Gulyamov G., Erkaboev U.I., Baymatov P.J. Simulation of Energy Dependence of the Photon Absorption on the Magnetic Field in Semiconductors (Modelirovanie zavisimosti energii pogloshchaemogo fotona ot magnitnogo polya v poluprovodnikakh). International Scientific journal for Alternative Energy and Ecology (ISJAEE), 2016;(19–20):130–138 (in Russ.).

2. [2] Gulyamov G., Erkaboev U.I., Baymatov P.J., Gulyamov A.G. The effect of pressure on the magnetoabsorption in narrow-gap semiconductors (Vliyanie davleniya na magnitoopticheskoe pogloshchenie v uzkozonnykh poluprovodnikakh). International Scientific journal for Alternative Energy and Ecology (ISJAEE), 2017;(7–9):112–120 (in Russ.).

3. [3] Poplavko Yu.M. Fundamentals of physics of magnetic phenomena in crystals (Osnovy fiziki magnitnykh yavlenii v kristallakh). Kiev: “NTUU KPI”, 2007; 230 p.

4. [4] Platonov V.V., Kudasov Yu.B., Makarov I.V., Maslov D.A., Surdin O.M., Zholudev M.S., Ikonnikov A.V., Gavrilenko V.I., Mikhailov N.N., Dvoretskii S.A. Investigation of magnetoabsorption at different temperatures in HgTe/CdHgTe quantum-well heterostructures in pulsed magnetic fields. Semiconductors, 2015;49(12):1611–1615.

5. [5] Kondakov O.V., Ivanov K.G. Magnetooptical oscillations in bismuth at T ≥ 77K. Semiconductors, 2003;37(5):523–525.

6. [6] Grabov V.M., Ivanov K.G., Zaitsev A.A. Magneto-optical study of bismuth at 80–280 K. Semiconductors, 2000;34(11):1287–1289.

7. [7] Kapustina A.B., Petrov B.V., Rodina A.V., Seisyan R.P. Magnetic absorption of hexagonal crystals CdSe in strong and weak fields: Quasi-cubic approximation. Physics of the Solid State, 2000;42(7):1242–1252.

8. [8] Seisyan R.P., Savchenko G.M., Averkiev N.S. Diamagnetic exciton polariton in the interband magnetooptics of semiconductors. Semiconductors, 2012;46(7):873–877.

9. [9] Vaganov S.A., Seisyan R.P. Temperaturedependent excitonic absorption in long-period multiple In x Ga1 − x As/GaAs quantum well structures. Semiconductors, 2011;45(1):103–109.

10. [10] Bovkun L.S., Krishtopenko S.S., Ikonnikov A.V., Aleshkin A.Ya., Kadykov A.M., Ruffenach S., Consejo C., Teppe F., Knap W., Orlita M., Piot B., Potemski M., Mikhailov N.N., Dvoretskii S.A., Gavrilenko V.I. Magnetospectroscopy of double HgTe/CdHgTe quantum wells. Semiconductors, 2016;50(11):1532–1538.

11. [11] Derevyanchuk A.V., Zenkova K.Yu., Kramar V.M., Nitsovich B.M. Magnetooptical absorption of a molecular crystal in the exciton frequency range. Physics of the Solid State, 2005;47(6):1073–1075.

12. [12] Shaldin Yu.V., Warchulska I., Rabadanov M.Kh., Komar V.K. Magnetic investigations of Cd1−xZnxTe (x = 0.12, 0.21) wide-gap semiconductors. Semiconductors, 2004;38(3):288–292.

13. [13] Seisyan R.P., Kosobukin V.A., Markosov M.S. Excitons and polaritons in AlGaAs semiconductor alloys. Semiconductors, 2006;40(11):1287–1296.

14. [14] Anselm A.I. Introduction to the theory of semiconductors (Vvedenie v teoriyu poluprovodnikov). Moscow: Nauka Publ., 1978.

15. [15] Tsidilkovsky I.M. Electrons and holes in semiconductors (Elektrony i dyrki v poluprovodnikakh). Moscow: Nauka Publ., 1972.

16. [16] Dubitski I.S., Yafyasov A.M. On the field effect in thin films of semiconductors with Kane’s chargecarrier dispersion relation. Semiconductors, 2014;48(3):312–319.

17. [17] Pavlov N.V., Zegrya G.G. Optical properties of heterostructures with deep AlSb/InAs0.84Sb0.16/AlSb quantum wells. Semiconductors, 2014;48(9):1185–1195.

18. [18] Brandt N.B., Kulbachinsky V.A. Quasiparticles in condensed matter physics (Kvazichastitsy v fizike kondensirovannogo sostoyaniya). Moscow: Fizmatlit Publ., 2007.

19. [19] Seeger K. Semiconductor physics (Fizika poluprovodnikov). Moscow: World Publ., 1977.

20. [20] Bardeen J., Shockley W. Deformation Potentials and Mobility in Non-Polar Crystals. Physical Review, 1950;80(1):72–80.

21. [21] Vasileff H.D. Electron Self-Energy and Temperature-Dependent Effective Masses in Semiconductors: n-Type Ge and Si. Physical Review, 1957;105(2):441–446.

22. [22] Adams E.N. Vasileff's Calculation of Electronic Self-Energy in Semiconductors. Physical Review. 1957;107(3):671–672.

23. [23] Pässler R. Semi-empirical descriptions of temperature dependences of band gaps in semiconductors. Physica status solidi (b), 2003;236(3):710–728.

24. [24] Vainshtein I.A., Zatsepin A.F., Kortov V.S. Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap. Physics of the Solid State, 1999;41(6):905–908.

25. [25] Pässler R. Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors. Physica status solidi (b), 1999;216:975–1001.

26. [26] Gulyamov G., Erkaboev U.I., Sharibaev N.Yu. The de Haas-van Alphen effect at high temperatures and low magnetic fields in semiconductors. Modern physics letter B, 2016;30(7):1–7.

27. [27] Gulyamov G., Erkaboev U.I., Baymatov P.J. Determination of the density of energy states in a quantizing magnetic field for model Kane. Advances in condensed matter physics, 2016;5:1–5; Article ID 5434717. http://dx.doi.org/10.1155/2016/5434717.

28. [28] Gulyamov G., Erkaboev U.I., Sharibaev N.Yu. Effect of temperature on the thermodynamic density of states in a quantizing magnetic field. Semiconductors, 2014;48(10):1323–1328.

29. [29] Pidgeon C.R., Brown R.N. Interband Magneto-Absorption and Faraday Rotation in InSb. Physical Review, 1966;146(2):575–583.

30. [30] Zwerdling S., Keyes R.J., Foner S., Kolm H.H., Lax B. Magneto-band Effects in InAs and InSb in dc and High Pulsed Magnetic Fields. Physical Review, 1956;104(6):1805–1808.


Review

For citations:


Gulyamov G., Erkaboev U.I., Gulyamov A.G. MATHEMATICAL MODELING OF TEMPERATURE EFFECT ON THE FAN CHART OF MAGNETOABSORPTION SPECTRUM IN SEMICONDUCTORS. Alternative Energy and Ecology (ISJAEE). 2019;(01-03):104-115. (In Russ.) https://doi.org/10.15518/isjaee.2019.01-03.104-115

Views: 634


ISSN 1608-8298 (Print)