Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Efficiency evaluation of the of using carbon cloth as a carrier material for anaerobic biofilters during the start-up period when processing the liquid fraction of the organic agrowaste dark fermentation effluent

https://doi.org/10.15518/isjaee.2025.02.038-055

Abstract

The production and accumulation of various organic wastes increases annually, posing a threat to humanity and the environment: wastes ending up in landfills produce climate-active gases and are filtered into soil and water basins. Anaerobic digestion is a well-known method of biological conversion of organic wastes from livestock complexes. Twostage anaerobic digestion (TAD) with the production of hydrogenand methane-containing biogas, respectively, in the first (dark fermentation) and second (methanogenic) reactors is a promising technology for more complete material and energy conversion of organic matter in wastes. Although TAD is not a new process, information on the process stability and effective operating conditions is limited and often contradictory. In this paper, the effect of carbon cloth as a biomass carrier material on the efficiency of thermophilic methanogenesis of the liquid fraction of dark fermentation effluent during the processing of a model of organic wastes from the agro-industrial complex during the system startup period was studied. The organic matter load in the dark fermentation (DF) reactor was constant (24 g VS/(l day)), while in the methanogenic anaerobic biofilters it was varied by changing the hydraulic retention time (HRT) accordingly from 1,6 to 3,2 days. The average COD content in the influent of anaerobic biofilters was 7400 mg COD/l. On average, the hydrogen production rate of 1,35 l/(l day) and the hydrogen yield of 56,2 ml/g VS were achieved at a hydrogen content in biogas of 47,9% and a pH in the DF reactor of 4,22. The carbon cloth contributed to an increase in the methane yield during the start-up period and made it possible to increase the volumetric methane yield by an average of 25% at steady-state modes at HRT of 3,2 and 2 days. At HRT of 1,6 days, the methane production rate was 70% higher in the reactor with the carbon cloth, however, both reactors operated unstably. It should be noted that anaerobic biofilters used the liquid fraction of dark fermentation effluent as an influent, which is a complex substrate due to its low pH.

About the Authors

D. A. Kovalev
Federal Scientific Agroengineering Center
Russian Federation

Kovalev Dmitry Alexandrovich - head of the laboratory of bioenergy and supercritical technologies, candidate of technical Sciences. Researcher ID: K-4810-2015.

VIM 109428, Moscow, 1-y Institutskiy proezd, 5



A. G. Makarov
Federal Scientific Agroengineering Center
Russian Federation

Makarov Aleksandr Gennadievich - engineer of the laboratory of bioenergy and supercritical technologies, postgraduate.

VIM 109428, Moscow, 1-y Institutskiy proezd, 5



A. V. Safonov
Federal Scientific Agroengineering Center
Russian Federation

Safonov Aleksandr Vladimirovich - engineer of the laboratory of bioenergy and supercritical technologies. Researcher ID: AAE-1039-2022.

VIM 109428, Moscow, 1-y Institutskiy proezd, 5



Yu. V. Litti
Institute of Microbiology named after S.N. Vinogradsky, Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

Litti Yuri Vladimirovich - Head of Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences. Researcher ID: C-4945-2014. Scopus Author ID: 55251689800.

119071, Moscow, Leninsky Prospekt, Building 33, Building 2



A. A. Kovalev
Federal Scientific Agroengineering Center
Russian Federation

Kovalev Andrey Alexandrovich - senior researcher of the laboratory of bioenergy and supercritical technologies, candidate of technical sciences. Researcher ID: F-7045-2017, Scopus Author ID: 57205285134.

VIM 109428, Moscow, 1-y Institutskiy proezd, 5; +79263477955



References

1. Litti Yu., Zhuravleva E., Kovalev A. Anaerobic Fermentation and High-Value Bioproducts: A Brief Overview of Recent Progress and Current Challenges // Fermentation. – 2024, 10 (11). https://doi.org/10.3390/fermentation10110537.

2. Ashokkumar V., Flora G., Venkatkarthick R., SenthilKannan K., Kuppam C., Mary Stephy G., Kamyab H., Chen W. -H., Thomas J., Ngamcharussrivichai C. Advanced Technologies on the Sustainable Approaches for Conversion of Organic Waste to Valuable Bioproducts: Emerging Circular Bioeconomy Perspective. Fuel 2022, 324, 124313. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124313.

3. Zerbe M., Mörlein D., Hörtenhuber S. J. Towards Climate Neutrality: Comparison of Mitigation Strategies for Agricultural Emissions Using GWP100 and GWP* Metrics. Environmental Challenges 2025, 18, 101060. https://doi.org/https://doi.org/10.1016/j.envc.2024.101060.

4. Geng D., Evans S. A Literature Review of Energy Waste in the Manufacturing Industry // Computers & Industrial Engineering. – 2022, 173, 108713. https://doi.org/https://doi.org/10.1016/j.cie.2022.108713.

5. Budzianowski W. M. A Review of Potential Innovations for Production, Conditioning and Utilization of Biogas with Multiple-Criteria Assessment // Renewable and Sustainable Energy Reviews. – 2016, 54, 1148-1171. https://doi.org/https://doi.org/10.1016/j.rser.2015.10.054.

6. Kumari A., Dutta R., Gupta M. M., Rai M. P., Srivastava S., Chandra S., Nimkar V. Wastewater and Solid Waste as Feedstock for Energy Production BT – Novel Feedstocks for Biofuels Production / Guldhe A., Singh B., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 219-270. https://doi.org/10.1007/978-981-19-3582-4_8.

7. Goutam Mukherjee A., Ramesh Wanjari U., Chakraborty R., Renu K., Vellingiri B., George A., C. R. S. R., Valsala Gopalakrishnan A. A Review on Modern and Smart Technologies for Efficient Waste Disposal and Management // Journal of Environmental Management. – 2021, 297, 113347. https://doi.org/10.1016/j.jenvman.2021.113347.

8. Škerlič K., Muha R., Škerlič S. Adjustment of Waste Disposal with the Use of Modern Information Technology BT – TRANSBALTICA XII: Transportation Science and Technology / Prentkovskis O., Yatskiv (Jackiva) I., Skačkauskas P., Junevičius R., Maruschak P., Eds. // Springer International Publishing: Cham, 2022; pp. 530-541. https://doi.org/10.1007/978-3-030-947743_52.

9. Fang Q., Li T., Chen Z., Lin H., Wang P., Liu F. Full Biomass-Derived Solar Stills for Robust and Stable Evaporation to Collect Clean Water from Various WaterBearing Media // ACS Applied Materials & Interfaces. – 2019, 11 (11), 10672-10679. https://doi.org/10.1021/acsami.9b00291.

10. Nwakaire J., Obi O., Ugwuishiwu B. Agricultural waste concept, generation, utilization and management // Nigerian Journal of Technology. – 2016, 35, 957-964. https://doi.org/10.4314/njt.v35i4.34.

11. Loizidou M., Moustakas K., Rehan M., Nizami A. -S., Tabatabaei M. New Developments in Sustainable Waste-to-Energy Systems // Renewable and Sustainable Energy Reviews. – 2021, 151, 111581. https://doi.org/10.1016/j.rser.2021.111581.

12. Yang Y., Liew R. K., Tamothran A. M., Foong S. Y., Yek P. N. Y., Chia P. W., Van Tran T., Peng W., Lam S. S. Gasification of Refuse-Derived Fuel from Municipal Solid Waste for Energy Production: A Review // Environmental Chemistry Letters. – 2021, 19 (3), 2127-2140. https://doi.org/10.1007/s10311-020-01177-5.

13. Агапкин А. М., Махотина И. А. Переработка сельскохозяйственных отходов: рынок органических удобрений и производство органических пищевых продуктов. Хранение и переработка сельхоз сырья. – 2021; (3): 212-225. https://doi.org/10.36107/spfp.2021.221.

14. Nagendran R. Chapter 24 – Agricultural Waste and Pollution. In Waste; Letcher T. M., Vallero D. A., Eds. // Academic Press: Boston. – 2011, pp. 341-355. https://doi.org/https://doi.org/10.1016/B978-0-12-3814753.10024-5.

15. Zueva S., Kovalev A. A., Litti Yu. V., Ippolito N. M., Innocenzi V., De Michelis I. Environmental and Economic Aspects of Biomethane Production from Organic Waste in Russia // Energies. – 2021. https://doi.org/10.3390/en14175244.

16. Font-Palma C. Methods for the Treatment of Cattle Manure // A Review. – 2019, 5 (2). https://doi.org/10.3390/c5020027.

17. Wu X., Dong C., Yao W., Zhu J. Anaerobic Digestion of Dairy Manure Influenced by the Waste Milk from Milking Operations // Journal of Dairy Science. – 2011, 94 (8), 3778-3786. https://doi.org/10.3168/jds.2010-4129.

18. Atandi E., Rahman S. Prospect of Anaerobic Co-Digestion of Dairy Manure: A Review // Environmental Technology Reviews. – 2012, 1. https://doi.org/10.1080/09593330.2012.698654.

19. Kim E., Lee S., Jo H., Jeong J., Mulbry W., Rhaman S., Ahn H. Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses // Energies. – 2018, 11 (3). https://doi.org/10.3390/en11030484.

20. Chiumenti A., da Borso F., Limina S. Dry Anaerobic Digestion of Cow Manure and Agricultural Products in a Full-Scale Plant: Efficiency and Comparison with Wet Fermentation // Waste Management. – 2018, 71, 704-710. https://doi.org/https://doi.org/10.1016/j.wasman.2017.03.046.

21. Wang F., Pei M., Qiu L., Yao Y., Zhang C., Qiang H. Performance of Anaerobic Digestion of Chicken Manure Under Gradually Elevated Organic Loading Rates //international Journal of Environmental Research and Public Health. – 2019, 16 (12). https://doi.org/10.3390/ijerph16122239.

22. Meng Q., Liu H., Zhang H., Xu S., Lichtfouse E., Yun Y. Anaerobic Digestion and Recycling of Kitchen Waste: A Review // Environmental Chemistry Letters. – 2022, 20 (3), 1745-1762. https://doi.org/10.1007/s10311-022-01408-x.

23. Wang W., Liu S., Li Y. Chapter. Modeling of Biohydrogen Production by Dark Fermentation. Zhang Q., He C., Ren J., Goodsite M. E. B. T. -W. to R. B., Eds. // Academic Press. – 2023; pp. 1-14. https://doi.org/https://doi.org/10.1016/B978-0-12-821675-0.00009-8.

24. Liu D., Liu D., Zeng R. J., Angelidaki I. Hydrogen and Methane Production from Household Solid Waste in the Two-Stage Fermentation Process // Water Research. – 2006, 40 (11), 2230-2236. https://doi.org/10.1016/j.watres.2006.03.029.

25. Nasr N., Elbeshbishy E., Hafez H., Nakhla G., Hesham El Naggar M. Comparative Assessment of Single-Stage and Two-Stage Anaerobic Digestion for the Treatment of Thin Stillage // Bioresource Technology. – 2012, 111, 122-126. https://doi.org/10.1016/j.biortech.2012.02.019.

26. Sarangi P. K., Nanda S. Biohydrogen Production Through Dark Fermentation // Chemical Engineering & Technology. – 2020, 43 (4), 601-612. https://doi.org/https://doi.org/10.1002/ceat.201900452.

27. Vatsala T. M., Raj S. M., Manimaran A. A Pilot-Scale Study of Biohydrogen Production from Distillery Effluent Using Defined Bacterial Co-Culture //international Journal of Hydrogen Energy. – 2008, 33 (20), 5404-5415. https://doi.org/https://doi.org/10.1016/j.ijhydene.2008.07.015.

28. Monteiro E., Ferreira S. Biomass Waste for Energy Production // Energies. – 2022. https://doi.org/10.3390/en15165943.

29. Popescu C., Jurcoane S. Evaluation of Biogas Potential of Some Organic Substrates from Agriculture and Food Industry and Co-Digestion in Large Scale Biogas Plant // Romanian Biotechnological Letters. – 2015, 20, 10648-10655.

30. Shah F. A., Mahmood Q., Rashid N., Pervez A., Raja I. A., Shah M. M. Co-Digestion, Pretreatment and Digester Design for Enhanced Methanogenesis // Renewable and Sustainable Energy Reviews. – 2015, 42, 627-642. https://doi.org/10.1016/j.rser.2014.10.053.

31. Okamoto M., Miyahara T., Mizuno O., Noike T. Biological Hydrogen Production Potential of Material Characteristics of the Organic Fraction of Municipal Solid Wastes // Water science and technology: a journal of the International Association on Water Pollution Research. – 2000, 41, 25-32. https://doi.org/10.2166/wst.2000.0052.

32. Callaghan F. J., Wase D. A. J., Thayanithy K., Forster C. F. Continuous Co-Digestion of Cattle Slurry with Fruit and Vegetable Wastes and Chicken Manure // Biomass and Bioenergy. – 2002, 22 (1), 71-77. https://doi.org/10.1016/S0961-9534(01)00057-5.

33. Carrere H., Antonopoulou G., Affes R., Passos F., Battimelli A., Lyberatos G., Ferrer I. Review of Feedstock Pretreatment Strategies for Improved Anaerobic Digestion: From Lab-Scale Research to FullScale Application // Bioresource Technology. – 2016, 199, 386-397. https://doi.org/10.1016/j.biortech.2015.09.007.

34. Duque-Acevedo M., Belmonte-Ureña L. J., Cortés-García F. J., Camacho-Ferre F. Agricultural Waste: Review of the Evolution, Approaches and Perspectives on Alternative Uses // Global Ecology and Conservation. – 2020, 22, e00902. https://doi.org/10.1016/j.gecco.2020.e00902.

35. Choi J. -M., Han S. -K., Lee C. -Y. Enhancement of Methane Production in Anaerobic Digestion of Sewage Sludge by Thermal Hydrolysis Pretreatment // Bioresource Technology. – 2018, 259, 207-213. https://doi.org/10.1016/j.biortech.2018.02.123.

36. Lucas R., Groeneveld J., Harms H., Johst K., Frank K., Kleinsteuber S. The Critical Evaluation of Ecological Indices for the Comparative Analysis of Microbial Communities Based on Molecular Datasets // FEMS Microbiology Ecology. – 2017, 93, fiw209. https://doi.org/10.1093/femsec/fiw209.

37. Wintsche B., Jehmlich N., Popp D., Harms H., Kleinsteuber S. Metabolic Adaptation of Methanogens in Anaerobic Digesters Upon Trace Element Limitation // Frontiers in Microbiology. – 2018, 9. https://doi.org/10.3389/fmicb.2018.00405.

38. Cremonez P. A., Teleken J. G., Weiser Meier T. R., Alves H. J. Two-Stage Anaerobic Digestion in Agroindustrial Waste Treatment: A Review // Journal of Environmental Management. – 2021, 281, 111854. https://doi.org/10.1016/j.jenvman.2020.111854.

39. Fu S. -F., Xu X. -H., Dai M., Yuan X. -Z., Guo R. -B. Hydrogen and Methane Production from Vinasse Using Two-Stage Anaerobic Digestion // Process Safety and Environmental Protection. – 2017, 107, 81-86. https://doi.org/10.1016/j.psep.2017.01.024.

40. Venkiteshwaran K., Bocher B., Maki J., Zitomer D. Relating Anaerobic Digestion Microbial Community and Process Function. Microbiology Insights 2016, 2015, 37. https://doi.org/10.4137/MBI.S33593.

41. Wang Z., Yun S., Xu H., Wang C., Zhang Y., Chen J., Jia B. Mesophilic Anaerobic Co-Digestion of Acorn Slag Waste with Dairy Manure in a Batch Digester: Focusing on Mixing Ratios and Bio-Based Carbon Accelerants // Bioresource Technology. – 2019, 286, 121394. https://doi.org/10.1016/j.biortech.2019.121394.

42. Wang Z., Yun S., Shi J., Han F., Liu B., Wang R., Li X. Critical Evidence for Direct Interspecies Electron Transfer with Tungsten-Based Accelerants: An Experimental and Theoretical Investigation // Bioresource Technology. – 2020, 311, 123519. https://doi.org/10.1016/j.biortech.2020.123519.

43. Chen J., Yun S., Shi J., Wang Z., Abbas Y., Wang K., Han F., Jia B., Xu H., Xing T., Li B. Role of Biomass-Derived Carbon-Based CompositeAccelerants in Enhanced Anaerobic Digestion: Focusing on Biogas Yield, Fertilizer Utilization, and Density Functional Theory Calculations // Bioresource Technology. – 2020, 307, 123204. https://doi.org/10.1016/j.biortech.2020.123204.

44. Abbas Y., Yun S., Wang Z., Zhang Y., Zhang X., Wang K. Recent Advances in Bio-Based Carbon Materials for Anaerobic Digestion: A Review // Renewable and Sustainable Energy Reviews. – 2021, 135, 110378. https://doi.org/https://doi.org/10.1016/j.rser.2020.110378.

45. Yun S., Xing T., Han F., Shi J., Wang Z., Fan Q., Xu H. Enhanced Direct Interspecies Electron Transfer with Transition Metal Oxide Accelerants in Anaerobic Digestion // Bioresource Technology. – 2021, 320, 124294. https://doi.org/https://doi.org/10.1016/j.biortech.2020.124294.

46. Ke T., Yun S., Wang K., An J., Liu L., Liu J. Enhanced Anaerobic Co-Digestion Performance by Using Surface-Annealed Titanium Spheres at Different Atmospheres // Bioresource Technology. – 2022, 347, 126341. https://doi.org/10.1016/j.biortech.2021.126341.

47. Zhuravleva E., Kovalev A., Kovalev D., Kotova I., Shekhurdina S., Laikova A., Krasnovsky A., Pygamov T., Vivekanand V., Li L., He C., Litti Yu. Does Carbon Cloth Really Improve Thermophilic Anaerobic Digestion Performance on a Larger Scale? Focusing on Statistical Analysis and Microbial Community Dynamics // Journal of Environmental Management. – 2023, 341, 118124. https://doi.org/10.1016/j.jenvman.2023.118124.

48. Zhuravleva E. A., Shekhurdina S. V., Laikova A., Kotova I. B., Loiko N. G., Popova N. M., Kriukov E., Kovalev A. A., Kovalev D. A., Katraeva I. V., Vivekanand V., Awasthi M. K., Litti Yu. V. Enhanced Thermophilic High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Waste with Spatial Separation from Conductive Materials in a Single Reactor Volume. – 2024. https://doi.org/10.1016/j.jenvman.2024.121434.

49. Yan W., Mukherjee M., Zhou Y. Direct Interspecies Electron Transfer (DIET) Can Be Suppressed under Ammonia-Stressed Condition – Reevaluate the Role of Conductive Materials // Water Research. – 2020, 183, 116094. https://doi.org/https://doi.org/10.1016/j.watres.2020.116094.

50. Reguera G., McCarthy K., Mehta T., Nicoll J., Tuominen M., Lovley D. Extracellular Electron Transfer Via Microbial Nanowires // Nature. – 2005, 435, 1098-1101. https://doi.org/10.1038/nature03661.

51. Rotaru A. -E., Shrestha P., Liu F., Markovaite B., Chen S., Nevin K., Lovley D. Direct Interspecies Electron Transfer Between Geobacter Metallireducens and Methanosarcina Barkeri // Applied and Environmental Microbiology. – 2014, 80. https://doi.org/10.1128/AEM.00895-14.

52. Rotaru A. -E., Shrestha P., Liu F., Shrestha M., Shrestha D., Embree M., Zengler K., Wardman C., Nevin K., Lovley D. A New Model for Electron Flow during Anaerobic Digestion: Direct Interspecies Electron Transfer to Methanosaeta for the Reduction of Carbon Dioxide to Methane // Energy & Environmental Science. – 2014, 7, 408-415. https://doi.org/10.1039/C3EE42189A.

53. Nozhevnikova A. N., Russkova Y. I., Litti Yu. V., Parshina S. N., Zhuravleva E. A., Nikitina A. A. Syntrophy and Interspecies Electron Transfer in Methanogenic Microbial Communities // – Microbiology. – 2020, 89 (2), 129-147. https://doi.org/10.1134/S0026261720020101.

54. Akturk A. S., Demirer G. N. Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements // Sustainability. – 2020, 12 (12). https://doi.org/10.3390/su12125222.

55. Kovalev А. А., Kovalev D. А., Panchenko V. A., Zhuravleva Е. А., Laikova А. А., Shekhurdina S. V., Vivekanand V., Litti Yu. V. Approbation of an Innovative Method of Pretreatment of Dark Fermentation Feedstocks //international Journal of Hydrogen Energy. – 2022, 47 (78), 33272-33281. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.08.051.

56. Timofeeva S. S., Karaeva J. V., Kovalev A. A., Kovalev D. A., Litti Yu. V. Steam Gasification of Digestate after Anaerobic Digestion and Dark Fermentation of Lignocellulosic Biomass to Produce Syngas with High Hydrogen Content //international Journal of Hydrogen Energy. – 2023, 48 (21), 7559-7568. https://doi.org/ https://doi.org/10.1016/j.ijhydene.2022.11.260.

57. Kovalev A. A., Kovalev D. A., Nozhevnikova A. N., Zhuravleva E. A., Katraeva I. V., Grigoriev V. S., Litti Yu. V. Effect of Low Digestate Recirculation Ratio on Biofuel and Bioenergy Recovery in a Two-Stage Anaerobic Digestion Process //international Journal of Hydrogen Energy. – 2021, 46 (80), 39688-39699. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.09.239.

58. Kovalev A. A., Kovalev D. A., Litti Yu. V., Katraeva I. V. Biohydrogen production in the two-stage process of anaerobic bioconversion of organic matter of liquid organic waste with recirculation of digister effluent //international Journal of Hydrogen Energy. – 2020; 45(51):26831e9. https://doi.org/10.1016/j.ijhydene.2020.07.124.

59. Mikheeva Е. R., Katraeva I. V., Kovalev A. A., Shekhurdina S. V., Zhuravleva E. A., Laikova A. A., Kovalev D. A., Litti Yu. V. Optimization of Two-Stage Thermophilic Anaerobic Digestion of Dairy Wastewater: Effect of Carrier Material on Process Performance and Microbial Community //international Journal of Hydrogen Energy. – 2024, 88, 1108-1122. https://doi.org/https://doi.org/10.1016/j.ijhydene.2024.09.213.

60. Lu J. -S., Chang J. -S., Lee D. -J. Adding CarbonBased Materials on Anaerobic Digestion Performance: A Mini-Review // Bioresource Technology. – 2020, 300, 122696. https://doi.org/https://doi.org/10.1016/j.biortech.2019.122696.

61. Martins G., Salvador A. F., Pereira L., Alves M. M. Methane Production and Conductive Materials: A Critical Review // Environmental Science & Technology. – 2018, 52 (18), 10241-10253. https://doi.org/10.1021/acs.est.8b01913.


Review

For citations:


Kovalev D.A., Makarov A.G., Safonov A.V., Litti Yu.V., Kovalev A.A. Efficiency evaluation of the of using carbon cloth as a carrier material for anaerobic biofilters during the start-up period when processing the liquid fraction of the organic agrowaste dark fermentation effluent. Alternative Energy and Ecology (ISJAEE). 2025;(2):38-55. (In Russ.) https://doi.org/10.15518/isjaee.2025.02.038-055

Views: 52


ISSN 1608-8298 (Print)