Hydrogen power supply complex for isolated areas
https://doi.org/10.15518/isjaee.2025.11.125-143
Abstract
The article presents the results of Russia’s first industrial test of a hydrogen power supply system for remote low-power consumers, using the example of IT infrastructure facilities. The system includes an electrolysis unit with a capacity of 0,5 Nm³/h, a LaNi5-based metal hydride storage system, and a 4 kW electrochemical generator. The total cost of ownership comparison between the hydrogen system and a diesel generator set takes into account the logistics costs of delivering diesel fuel, climate constraints, equipment reliability, and maintenance requirements. The analysis results show that hydrogen technologies can already be economically competitive compared to diesel generators. The identified climate and transportation risks are compensated by the equipment’s climate adaptation and the reinforced design of the mini-container. The conducted tests confirmed the equipment’s stated technical parameters, including the electrolyzer’s performance, storage system characteristics, and power output. The economic assessment showed that the direct costs of hydrogen production are about $2,3/kg, which corresponds to the cost of generation of ~$0,15/kWh, whereas diesel generators require about $0,7/kWh. The total cost of ownership analysis for backup power supply of communication towers also revealed the advantage of the hydrogen complex over the diesel one. The presented results demonstrate the technological readiness of hydrogen power plants for industrial application and their potential for scaling on autonomous and hard-to-reach sites.
About the Authors
A. A. KaplunРоссия
Kaplun Alexey Alexandrovich, Chief Executive Officer,
123056, Moscow, Krasina Street, 3, Building 2.
D. A. Menshikov
Россия
Menshikov D. A. Menshikov Denis Alexandrovich, Business Development Director,
123056, Moscow, Krasina Street, 3, Building 2.
E. A. Frolova
Россия
Frolova Elena Alexandrovna, PhD in Physics and Mathematics, Expert, Project Manager,
121099, Moscow, Novinsky Boulevard, 13, Building 4;
127083, Moscow, 8 Marta Street, 12.
Scopus Author ID: 57201385755; Web of Science Researcher ID: ADO6430-2022.
O. V. Zhdaneev
Россия
Zhdaneev Oleg Valerevich, Doctor of Technical Sciences, Leading Researcher; Professor of the Higher Oil School,
119991, Moscow, Leninsky avenue, 29;
420008, RT, Kazan, Kremlevskaya Street, 18.
Web of Science Researcher ID: AAP1159-2020; Scopus Author ID: 6603132551.
References
1. Yue M., Lambert H., Pahon E., Roche R., Jemei S. & Hissel D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges // Renewable and Sustainable Energy Reviews. 2021; 146:111180.
2. AlZohbi G. An overview of hydrogen energy generation // ChemEngineering. 2024: 8(1);17.
3. Zhang T., Qadrdan M., Wu J., Couraud B., Stringer M., Walker S., ... & Strbac G. A systematic review of modelling methods for studying the integration of hydrogen into energy systems // Renewable and Sustainable Energy Reviews. 2025; 208:114964. https://doi.org/10.1016/j.rser.2024.114964
4. Galitskaya E., Gorbunov A., Kuptsova O. & Zhdaneev O. A full-scale hydrogen testbed as a key element in the development of hydrogen technologies // International Journal of Hydrogen Energy. 2025; 189:152161.
5. Ham K., Bae S. & Lee J. Classification and technical target of water electrolysis for hydrogen production // Journal of Energy Chemistry. 2024; 95:554-576. https://doi.org/10.1016/j.jechem.2024.04.003
6. Colangelo G., Spirto G., Milanese M. & de Risi A. Hydrogen production from renewable energy resources: A case study // Energy Conversion and Management. 2024; 311:118532. https://doi.org/10.1016/j.enconman.2024.118532
7. Bødal E. F., Mallapragada D., Botterud A. & Korpås M. Decarbonization synergies from joint planning of electricity and hydrogen production: A Texas case study // International Journal of Hydrogen Energy. 2020; 45(58):32899-32915. https://doi.org/10.1016/j.ijhydene.2020.09.127
8. Rad M. A. V., Ghasempour R., Rahdan P., Mousavi S. & Arastounia M. Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran // Energy. 2020; 190:116421. https://doi.org/10.1016/j.energy.2019.116421
9. Dispenza G., Sergi F., Napoli G., Antonucci V. & Andaloro L. Evaluation of hydrogen production cost in different real case studies // Journal of Energy Storage. 2019; 24:100757. https://doi.org/10.1016/j.est.2019.100757
10. Galitskaya E., Khakimov R., Moskvin A. & Zhdaneev O. Towards a new perspective on the efficiency of water electrolysis with anion-conducting matrix // International Journal of Hydrogen Energy. 2024; 49:15771583. https://doi.org/10.1016/j.ijhydene.2023.10.339
11. Bhandari R. & Shah R. R. Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany // Renewable Energy. 2021; 177:915-931. https://doi.org/10.1016/j.renene.2021.05.149
12. Liu J., Cao S., Chen X., Yang H. & Peng J. Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage // Applied Energy. 2021; 281:116038. https://doi.org/10.1016/j.apenergy.2020.116038
13. Navas S. J., González G. C. & Pino F. J. Hybrid power-heat microgrid solution using hydrogen as an energy vector for residential houses in Spain. A case study // Energy Conversion and Management. 2022; 263:115724. https://doi.org/10.1016/j.enconman.2022.115724
14. Dawood F., Shafiullah G. M. & Anda M. Stand-alone microgrid with 100% renewable energy: A case study with hybrid solar PV-battery-hydrogen // Sustainability. 2020; 12(5):2047. https://doi.org/10.3390/su12052047
15. Li X., Gao J., You S., Zheng Y., Zhang Y., Du Q. & Qin Y. Optimal design and techno-economic analysis of renewable-based multi-carrier energy systems for industries: A case study of a food factory in China // Energy. 2022; 244:123174. https://doi.org/10.1016/j.energy.2022.123174
16. Abomazid A. M., El-Taweel N. A. & Farag H. E. Optimal energy management of hydrogen energy facility using integrated battery energy storage and solar photovoltaic systems. IEEE // Transactions on Sustainable Energy. 2022; 13(3):1457-1468. https://doi.org/10.1109/TSTE.2022.3161891
17. Pan G., Gu W., Lu Y., Qiu H., Lu S. & Yao S. Optimal planning for electricity-hydrogen integrated energy system considering power to hydrogen and heat and seasonal storage. IEEE // Transactions on Sustainable Energy. 2020; 11(4):2662-2676. https://doi.org/10.1109/TSTE.2020.2970078
18. Li L., Sun Y., Han Y. & Chen W. Seasonal hydrogen energy storage sizing: Two-stage economic-safety optimization for integrated energy systems in northwest China // Science. 2024; 27(9). https://doi.org/10.1016/j.isci.2024.110691
19. Elberry A. M., Thakur J. & Veysey J. Seasonal hydrogen storage for sustainable renewable energy integration in the electricity sector: A case study of Finland // Journal of Energy Storage. 2021; 44:103474. https://doi.org/10.1016/j.est.2021.103474
20. Zhao G., Nielsen E. R., Troncoso E., Hyde K., Romeo J. S. & Diderich M. Life cycle cost analysis: A case study of hydrogen energy application on the Orkney Islands // International Journal of Hydrogen Energy. 2019; 44(19):9517-9528. https://doi.org/10.1016/j.ijhydene.2018.08.015
21. Mokhtara C., Negrou B., Settou N., Settou B. & Samy M. M. Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria // Energy. 2021; 219:119605. https://doi.org/10.1016/j.energy.2020.119605
22. Hoseinzadeh S. & Garcia D. A. Techno-economic assessment of hybrid energy flexibility systems for islands’ decarbonization: A case study in Italy // Sustainable Energy Technologies and Assessments. 2022; 51:101929. https://doi.org/10.1016/j.seta.2021.101929
23. Widera B. Renewable hydrogen implementations for combined energy storage, transportation and stationary applications // Thermal Science and Engineering Progress. 2020; 16:100460. https://doi.org/10.1016/j.tsep.2019.100460
24. Liu J., Cao S., Chen X., Yang H. & Peng J. Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage // Applied Energy. 2021; 281:116038. https://doi.org/10.1016/j.apenergy.2020.116038
25. Franco A. & Giovannini C. Hydrogen gas compression for efficient storage: Balancing energy and increasing density // Hydrogen. 2024; 5(2):293-311. https://doi.org/10.3390/hydrogen5020017
26. Usman M. R. Hydrogen storage methods: Review and current status // Renewable and Sustainable Energy Reviews. 2022; 167:112743. https://doi.org/10.1016/j.rser.2022.112743
27. Abdin Z., Khalilpour K. & Catchpole K. Projecting the levelized cost of large scale hydrogen storage for stationary applications // Energy Conversion and Management. 2022; 270:116241. https://doi.org/10.1016/j.enconman.2022.116241
28. Li Z., Zhang W., Zhang R. & Sun H. Development of renewable energy multi-energy complementary hydrogen energy system (A Case Study in China): A review // Energy Exploration & Exploitation. 2020; 38(6):2099-2127. https://doi.org/10.1177/0144598720953512
29. Liu Y., Chabane D. & Elkedim O. Optimization of LaNi5 hydrogen storage properties by the combination of mechanical alloying and element substitution // International Journal of Hydrogen Energy. 2024; 53:394-402. https://doi.org/10.1016/j.ijhydene.2023.12.038
30. Hermesmann M., Tsiklios C. & Müller T. E. The environmental impact of renewable hydrogen supply chains: local vs. remote production and long-distance hydrogen transport // Applied Energy. 2023; 351:121920. https://doi.org/10.1016/j.apenergy.2023.121920
31. Martin A., Agnoletti M. F. & Brangier E. Users in the design of Hydrogen Energy Systems: A systematic review // International Journal of Hydrogen Energy. 2020:45(21);11889-11900.
32. Yang M., Liu L. & Du JDesign of Hydrogen Supply Chain Networks for Cross-Regional Distribution // Industrial & Engineering Chemistry Research. 2025; 64(8):4498-4515. https://doi.org/10.1021/acs.iecr.4c03989
33. Khakimov R., Moskvin A. & Zhdaneev O. Hydrogen as a key technology for long-term & seasonal energy storage applications // International Journal of Hydrogen Energy. 2024; 68:374-381. https://doi.org/10.1016/j.ijhydene.2024.04.066
34. Zhdaneev O. V., Karasevich V. A., Moskvin A. V. & Khakimov R. R. Application of renewable and hydrogen energy in the Arctic by the example of modernizing the energy system of the Arctic settlement of Khatanga // International Journal of Hydrogen Energy. 2024; 95:267-277. https://doi.org/10.1016/j.ijhydene.2024.11.183
35. Mel’nikov V. P., Osipov V. I., Brushkov A. V., Badina S. V., Velikin S. A., Drozdov D. S. & Chzhan R. V. Decreased stability of the infrastructure of Russia’s fuel and energy complex in the Arctic because of the increased annual average temperature of the surface layer of the cryolithozone // Herald of the Russian Academy of Sciences. 2022; 92(2):115-125. https://doi.org/10.1134/S1019331622020083
36. Troowin. Dianchi lithium-ion battery case study. Troowin. http://www.troowin.com/dianchi1/321.html (Аccessed November 18, 2025).
37. Sino Synergy Power. Remote telecom station power supply case study. https://www.sinosynergypower.com/ecase/23.html (Аccessed November 18, 2025).
38. Wenstone H₂. Wenstone H₂ – Hydrogen energy solutions. https://www.wenstoneh2.com/ (Аccessed November 18, 2025).
39. HY2LAN. HY2LAN hydrogen technologies. http://hy2lan.com (Аccessed November 18, 2025).
40. EveHoldings. EveHoldings corporate. https:// www.eveholdings.com/ (Аccessed November 18, 2025).
41. Magnino A., Marocco P., Saarikoski A., Ihonen J., Rautanen M. & Gandiglio M. Total cost of ownership analysis for hydrogen and battery powertrains: A comparative study in Finnish heavy-duty transport // Journal of Energy Storage. 2024; 99:113215. https://doi.org/10.1016/j.est.2024.113215
42. https://toyo.ru.com/dizelnyy-generator-toyo-tkv-7-5sbs/ (Аccessed November 18, 2025).
Review
For citations:
Kaplun A.A., Menshikov D.A., Frolova E.A., Zhdaneev O.V. Hydrogen power supply complex for isolated areas. Alternative Energy and Ecology (ISJAEE). 2025;(11):125-143. (In Russ.) https://doi.org/10.15518/isjaee.2025.11.125-143
JATS XML































