

COMPUTER SIMULATION OF THE CATHODE ACTIVE LAYER IN FUEL CELLS WITH SOLID POLYMER ELECTROLYTE: OVERALL CATHODE CURRENT TRANSIENT AND CALCULATION OF CATHODE OVERALL CHARACTERISTICS
https://doi.org/10.15518/isjaee.2016.07-08.043-056
Abstract
A computer simulation of the structure of the active layer cathode of a fuel cell with solid polymer electrolyte is carried out. The calculation process of the overall transient current for several values of the potential of the cathode was carried out. It was assumed that in the processes of wet interface in the substrate grains (agglomerates of carbon particles on the surface of which is covered with platinum) there are two factors: flooding of the pores in the grains of the substrate by water released during the electrochemical recovery of platinum, and draining of the grains as a result of water filtration.
The paper calculates the current-voltage curves. When the temperature Ts of the active layer exceeds the temperature T at which the fuel cell operates, there has been a significant increase in overall value of the currents of the cathode with increase Ts . This is due to the fact that at the transient overall value of the current, the substrate grains in the active layer are only partially submerged by water. It is also shown that the higher the flow rate of filtration is (it is proportional to the constant k in Darcy's law), the greater the release of the grains of the substrate from the water and a corresponding increase in the overall value of the current of the cathode is. Thus, to increase the amount of overall current of the cathode for a given value of capacity is possible by varying (increasing) the temperature of the active layer T and the Darcy constant k.
About the Authors
Yu. G. ChirkovRussian Federation
31/5 Leninsky ave., Moscow, 119991
Information about the author: D.Sc. (chemistry), leading researcher, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS.
Education: Moscow Engineering Physics Institute (1960) on “Theoretical nuclear physics”.
Research area: theory of porous electrodes in electrochemical technologies (fuel cells, lithium-ion batteries, super capacitors, water electrolysis, and so on).
Publications: 250.
V. I. Rostokin
Russian Federation
31 Kashirskoe drive, Moscow, 115409
Information about the author: Ph.D. (physics and mathematics), associate professor of the General Physics department, National Research Nuclear University (MEPhI); experience of teaching work for 50 years.
Awards: third prize of the USSR State Committee on public education “For significant progress in the restructuring of the content of the educational process, it update in light of recent achievements and perspectives of development of science, technology and culture, the creation of special courses for directions, determining technical, scientific and social progress of the USSR (the Resolution of the Collegiums of the USSR State Committee for public education at.06.1991, No. 10/3)”.
Education: Moscow Engineering Physics Institute (1960) on “Theoretical nuclear physics”.
Research area: theory of porous electrodes in electrochemical technologies (fuel cells, lithium-ion batteries, super capacitors), and problems of nuclear and atomic physics.
Publications: more than 120.
References
1. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications / Ed. Zhang J. Springer Verlag London Limited, 2008. 1137 p.
2. Xie J., Wood I. D.L., Wayne D.M., Zawodzinski T.A., Atanassov P., Borup R.L. Durability of PEFCs at high humidity conditions // J. Electrochem. Soc. 2005. Vol. 152. P. A104–А113.
3. Mukherjee P.P., Wang C.Y. Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer // J. Electrochem. Soc. 2006. Vol. 153. P. A840–А849.
4. Rong F., Huang C., Liu Z.OS., Song D., Wang Q. Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling. Part I. Mechanical model // J. Power Sources. 2008. Vol. 175. P. 699–711.
5. Rong F., Huang C., Liu Z.OS., Song D., Wang Q. Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling. Part II. Simulation and understanding // J. Power Sources. 2008. Vol. 175. P. 712–723.
6. Чирков Ю.Г., Ростокин В.И. Активный слой катода топливного элемента с полимерным электро- литом: природа каналов подачи протонов и кислорода // Электрохимия. 2012. Т. 48. С.1192–1204. Chirkov Yu.G., Rostokin V.I. Aktivnyj sloj katoda toplivnogo èlementa s polimernym èlektrolitom: priroda kanalov podači protonov i kisloroda. Russ. J. Electrochem., 2012, vol. 48, pp. 1086 (in Eng.).
7. Тарасевич Ю.Ю. Перколяция: теория, приложения, алгоритмы. М.: Эдиториал УРСС, 2011. 112 с. Tarasevich Yu.Yu. Perkolâciâ: teoriâ, priloženiâ, algoritmy. Moscow: Èditorial URS Publ., 2011 (in Russ.).
8. Чирков Ю.Г., Ростокин В.И. Катод топливного элемента с твердым полимерным электролитом: конструирование оптимальной структуры активного слоя // Электрохимия. 2014. Т. 50 (9). С. 968–982. Chirkov Yu.G., Rostokin V.I. Katod toplivnogo èlementa s tverdym polimernym èlektrolitom: konstruirovanie optimalʹnoj struktury aktivnogo sloâ. Russ. J. Electrochem., 2014, vol. 50 (9), pp. 872 (in Eng.).
9. Чирков Ю.Г. Пористые электроды в электро-химических технологиях: компьютерное моделирование // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). 2014. № 9. С. 55–59. Chirkov Yu.G. Poristye èlektrody v èlektrohimičeskih tehnologiâh: kompʹûternoe modelirovanie. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 9, pp. 55–59 (in Russ.).
10. Чирков Ю.Г., Ростокин В.И. Компьютерное моделирование активного слоя катода топливного элемента с полимерным электролитом: учет процесса диффузии кислорода в зернах подложки // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). 2014. № 6. С. 8–21. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlementa s polimernym èlektrolitom: učet processa diffuzii kisloroda v zernah podložki. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 6, pp. 8–21 (in Russ.).
11. Чирков Ю.Г., Ростокин В.И. Компьютерное моделирование активного слоя катода топливного элемента с полимерным электролитом: о факторах, тормозящих полноценное протекание процесса генерации тока // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). 2014. № 9. С. 8–21. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlementa s polimernym èlektrolitom: o faktorah, tormozâŝih polnocennoe protekanie processa generacii toka. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 9, pp. 8–21 (in Russ.).
12. Чирков Ю.Г., Ростокин В.И. Процесс затопления водой активного слоя катода топливного элемента с твердым полимерным электролитом // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). 2014. № 14. С. 105–115. Chirkov Yu.G., Rostokin V.I. Process zatopleniâ vodoj aktivnogo sloâ katoda toplivnogo èlementa s tverdym polimernym èlektrolitom. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 14, pp. 105–115 (in Russ.).
13. Чирков Ю.Г., Ростокин В.И., Кузов А.В. Компьютерное моделирование активного слоя катода топливного элемента с твердым полимерным электролитом: исследование природы транзиента габаритного тока // Электрохимия. 2016. Т. 52(2). С. 142–156. Chirkov Yu.G., Rostokin V.I., Kuzov A.V. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlementa s tverdym polimernym èlektrolitom: issledovanie prirody tranzienta gabaritnogo toka. Russ. J. Electrochem., 2016, vol. 52 (2), pp.123–135 (in Eng.).
14. Rubio M.A., Urquia A., Dormido S. Diagnosis of PEM fuel cells through current interruption // Journal of Power Sources. 2007. Vol. 171. P. 670–677.
15. Li H., Tang Y., Wang Z., Shi Z., Wu S., Song D., Zhang J., Fatih K., Zhang J., Wang X., Liu Z., Abouatallah R., Mazza A. A review of water flooding issues in the proton exchange membrane fuel cell // Journal of Power Sources. 2008. Vol. 178. P. 103–117.
16. Yousfi-Steiner N., Mocoteguy Ph., Candusso D., Hissel D., Hernandez A., Aslanides A. A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization // Journal of Power Sources. 2008. Vol. 183. P. 260–274.
17. Weber A.Z., Hickner M.A. Modeling and highresolution-imaging studies of water-content profiles in a polymer-electrolyte-fuel-cell membrane-electrode assembly // Electrochimica Acta. 2008. Vol. 53. P. 7668–7674.
18. Tushar Swamy, Kumbur E.C. and Mench M.M. Characterization of Interfacial Structure in PEFCs: Water Storage and Contact Resistance Model // Journal of The Electrochemical Society. 2010. Vol. 157(1). P. B77–B85.
19. Xuhai Wang and Trung Van Nguyen. Modeling the Effects of the Microporous Layer on the Net Water Transport Rate Across the Membrane in a PEM Fuel Cell // Journal of The Electrochemical Society. 2010. Vol. 157(4). P. B496–B505.
20. Rubio M.A., Urquia A., Dormido S. Diagnosis of performance degradation phenomena in PEM fuel cells // International Journal of Hydrogen Energy. 2010. Vol. 35. P. 2586–2590.
21. Jiao K., Li X. Water transport in polymer electrolyte membrane fuel cells // Progress in Energy and Combustion Science. 2011. Vol. 37. P. 221–291.
22. Li Chen, Hui-Bao Luan, Ya-Ling He, Wen-Quan Tao. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flowfields // International Journal of Thermal Sciences. 2012. Vol. 51. P. 132–144.
23. Чирков Ю.Г., Ростокин В.И. Активный слой топливного элемента с полимерным электролитом: компьютерное моделирование процесса влагообмена в зернах подложки // Международный научный журнал «Альтернативная энергетика и экология» (IS-JAEE). 2016. № 1. С. 15–23. Chirkov Yu.G., Rostokin V.I. Aktivnyj sloj toplivnogo èlementa s polimernym èlektrolitom: kompʹûternoe modelirovanie processa vlagoobmena v zernah podložki. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016, no. 1, pp. 15–23 (in Russ.).
24. Parthasarathy A., Srinivasan S., Appleby A.J., Martin C.R. Тemperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion – a microelectrode investigation // J. Electrochem. Soc. 1992. Vol. 139. P. 2530–2537.
25. Полубаринова-Кочина П.Я. Теория движения грунтовых вод. М.: Наука, 1977. 664с. Polubarinova-Kochina P.Ya. Teoriâ dviženiâ gruntovyh vod. Moscow: Nauka Publ., 1977 (in Russ.).
26. Теоретические основы инженерной геологии. Механико-математические основы. М.: Недра, 1986. Teoretičeskie osnovy inženernoj geologii. Mehaniko-matematičeskie osnovy. Moscow: Nedra Publ., 1986 (in Russ.).
27. Шестаков В.М. Гидрогеодинамика. М.: МГУ, 1995. Shestakov V.M. Gidrogeodinamika. Moscow: MGU Publ., 1995 (in Russ.).
28. Нерпин С.В., Чудновский А.Ф. Физика почвы. М.: Наука,1967. Nerpin S.V., Chudnovsky A.F. Fizika počvy. Moscow: Nauka Publ., 1967 (in Russ.).
29. Амаглобели И.П. Фильтрация неньютоновских жидкостей через грунты и бетоны. В кн. Л.: Энергия. 1971. Amaglobeli I.P. Filʹtraciâ nenʹûtonovskih židkostej čerez grunty i betony. Leningrad: Ènergiâ Publ,. 1971 (in Russ.).
30. Бондаренко В.Ф. Физика движения поземных вод. Л.: Гидрометеоиздат, 1973. Bondarenko V.F. Fizika dviženiâ pozemnyh vod. Leningrad: Gidrometeoizdat Publ., 1973 (in Russ.).
31. Физика почвенных вод. М.: Наука, 1981. Fizika počvennyh vod. Moscow: Nauka Publ., 1981 (in Russ.).
32. Чирков Ю.Г., Ростокин В.И. Теория пористых электродов: расчет габаритных характеристик катода для случая, когда поляризационная кривая имеет участки с различными наклонами // Электрохимия. 2006. Т. 42 (7). С. 806–812. Chirkov Yu.G., Rostokin V.I. Teoriâ poristyh èlektrodov: rasčet gabaritnyh harakteristik katoda dlâ slučaâ, kogda polârizacionnaâ krivaâ imeet učastki s različnymi naklonami. Russ. J. Electrochem., 2006, vol. 42 (9), pp. 722 (in Eng.).
Review
For citations:
Chirkov Yu.G., Rostokin V.I. COMPUTER SIMULATION OF THE CATHODE ACTIVE LAYER IN FUEL CELLS WITH SOLID POLYMER ELECTROLYTE: OVERALL CATHODE CURRENT TRANSIENT AND CALCULATION OF CATHODE OVERALL CHARACTERISTICS. Alternative Energy and Ecology (ISJAEE). 2016;(7-8):43-56. (In Russ.) https://doi.org/10.15518/isjaee.2016.07-08.043-056