Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

ABOUT FULLERENES AND THEIR DERIVATIVES TOXICITY

https://doi.org/10.15518/isjaee.2016.07-08.069-092

Abstract

The review discusses the effects of fullerene C60 and its derivatives on the living organism. It is noted that experimental studies have shown that high dispersion, chemical activity and the nature of their interaction with living cells represent a great danger to humans. Effects of fullerenes on the body are determined by the following factors: the ability to penetrate through the membrane, a tendency to form aggregates with different biochemical compounds, ability to generate derivatives of various sizes, structure and reactivity on the basis of the surrounding environment. It is stressed that the problem of a toxicological evaluation of fullerenes and their possible use with food, water, air, cosmetics and medicines is currently far from being resolved. 

About the Authors

S. Y. Zaginaychenko
Institute of Materials Science Problems by I.N.Frantsevich, NAS of Ukraine
Ukraine

b. 3, Krzyzanowski str., Kiev-142, 03680

tel.: +380 (44) 424-03-81

e-mail: shurzag@ipms.kiev.ua, hurzag@materials.kiev.ua

Information about the author: D.Sc. (physics and mathematics), professor, senior researcher of laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine, Kiev.

Education: Dnepropetrovsk National University with degree of Physicist, Teacher of Physics (1974–1979); Dnepropetrovsk Metallurgical Institute, postgraduate studies (1979– 1982); Ph.D. (physics and mathematics) (1985).

Research area: physical properties of metals, ordering alloys, fullerenes on the level of molecular-kinetic idea; theory of phase transformations in metal-hydrogen systems and carbon materials; determination of hydrogen solubility in these solids, comparison of theoretical results with experimental data.

Publications: about 500, 7 monographs.



I. S. Chekman
National Medical University by A.A. Bogomolets
Russian Federation

b. 13, Shevchenko boulevard, Kiev, 01601

tel.: (044) 234-40-62 

Information about the author: corresponding member of NAS of Ukraine, corresponding member of NAMS of Ukraine, D.Sc. (medicine), professor, the head of Bogomolets National Medical University pharmacology department.

Education: Ternopil Medical Institute, physician speciality (1955–1961), Kiev Bogomolets Medical Institute, post-graduate studies (1963–1966). Research area: general pharmacology, clinical pharmacology, physicochemical pharmacology, nanopharmacology, properties of carbon and metal nanoparticles.

Publications: more than 1000, including 41 monograph.



D. V. Schur
Institute of Materials Science Problems by I.N.Frantsevich, NAS of Ukraine
Ukraine

b. 3, Krzyzanowski str., Kiev-142, 03680

tel.: +380 (44) 424-03-81

e-mail: shurzag@ipms.kiev.ua, hurzag@materials.kiev.ua

Information about the author: professor, chief of laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine, Kiev, Ukraine.

Education: Kiev Polytechnic Institute with degree in Chemical Engineering (1980- 1985); Institute for Problems of Materials Science of NAS of Ukraine, postgraduate studies (1986-1990); Ph.D. (chemistry) (1991).

Research area: hydrogen materials science and carbon nanostructures (synthesis, properties and application), the hydrogen and carbon plasma, the study of peculiarities of the hydrogenation processes of materials and carbon nanostructures, the use of materials as systems for hydrogen storage.

Publications: more than 500, 9 monographs, 4 patents.



A. P. Pomytkin
Institute of Materials Science Problems by I.N.Frantsevich, NAS of Ukraine; National Technical University of Ukraine (KPI), Kiev, Ukraine
Ukraine

b. 3, Krzyzanowski str., Kiev-142, 03680

tel.: +380 (44) 424-03-81

e-mail: shurzag@ipms.kiev.ua, hurzag@materials.kiev.ua

Information about the author: an employee of the department of Chemistry and Materials Science, National Academy of Aviation in Azerbaijan.

Education: Azerbaijan Oil and Chemistry Institute in specialty engineer-economist for the organization and the economics of chemical industry.

Research area: synthesis of polymers, polymer compositions and composite materials; chemistry of carbon nanomaterials and their application.

Publications: more than 40, including chapters in monographs and 12 patents.



V. A. Lavrenko
Institute of Materials Science Problems by I.N.Frantsevich, NAS of Ukraine
Ukraine

b. 3, Krzyzanowski str., Kiev-142, 03680

tel.: +380 (44) 424-03-81

e-mail: shurzag@ipms.kiev.ua, hurzag@materials.kiev.ua



A. D. Zolotarenko
Institute of Materials Science Problems by I.N.Frantsevich, NAS of Ukraine
Ukraine

Information about the author: professor, chief of laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine, Kiev, Ukraine.

Education: Kiev Polytechnic Institute with degree in Chemical Engineering (1980- 1985); Institute for Problems of Materials Science of NAS of Ukraine, postgraduate studies (1986-1990); Ph.D. (chemistry) (1991).

Research area: hydrogen materials science and carbon nanostructures (synthesis, properties and application), the hydrogen and carbon plasma, the study of peculiarities of the hydrogenation processes of materials and carbon nanostructures, the use of materials as systems for hydrogen storage.

Publications: more than 500, 9 monographs, 4 patents.



S. N. Yarmolyuk
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev
Ukraine

b. 150, str. Zabolotnogo, Kiev, 03680

tel.: (380-44) 526-11-69 

Information about the author: Ph.D. (chemistry), senior researcher of laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine, Kiev.

Education: Kiev Polytechnical Institute with degree in Chemical Engineering (1999- 2004); Institute for Problems of Materials Science of NAS of Ukraine, postgraduate studies (2004-2008). Ph.D. in Chemical sciences (2010).

Research area: chemistry of carbon nanomaterials and materials science hydrogen (synthesis, properties and applications), carbon and hydrogen plasma, the study features of the processes of formation of carbon nanostructures, hydrogen materials science, the use of materials as hydrogen storage systems.

Publications: 96, chapters in monographs and 4 patents.



V. S. Kublanovskiy
Institute of General and Inorganic Chemistry by V.I.Vernadsky, National Academy of Sciences of Ukraine
Ukraine

b. 32/34, Academician Palladin ave., Kiev, 03142

tel.: (044) 424-04-61 



I. M. Kosygina
Institute of Colloidal Chemistry and Water Chemistry by A.V.Dumansky, National Academy of Sciencesof Ukraine, Kiev
Ukraine

Information about the author: Ph.D. (chemistry), senior researcher of laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine, Kiev.

Education: Kiev Polytechnical Institute with degree in Chemical Engineering (1999- 2004); Institute for Problems of Materials Science of NAS of Ukraine, postgraduate studies (2004-2008). Ph.D. in Chemical sciences (2010).

Research area: chemistry of carbon nanomaterials and materials science hydrogen (synthesis, properties and applications), carbon and hydrogen plasma, the study features of the processes of formation of carbon nanostructures, hydrogen materials science, the use of materials as hydrogen storage systems.

Publications: 96, chapters in monographs and 4 patents.



A. M. Shevchenko
National University of Food Technologies, Kiev
Ukraine


V. F. Zinchenko
Fiziko-Chemical Institute of National Academy of Sciences of Ukraine by A.V.Bogatsky, Odessa
Ukraine

Information about the author: D.Sc. (chemistry), professor, the head of department of Medicinal Chemistry of the Institute of Molecular Biology and Genetics of the NAS of Ukraine.

Education: Taras Shevchenko National University of Kiev; M.Sc. in Chemistry of Natural Compounds; postgraduate course at Novosibirsk Institute of Bioorganic Chemistry, PhD degree in Chemistry (1993).

Research area: rational design of protein kinase inhibitors with the aid of organic chemistry, computer modeling and biochemical screening; development of fluorescent dyes for biopolymer detection.

Publications: about 400.



Z. A. Matysina
Dnepropetrovsky National University, Dnepropetrovsk
Ukraine

Information about the author: Ph.D. (chemistry), senior researcher of laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine, Kiev.

Education: Kiev Polytechnical Institute with degree in Chemical Engineering (1999- 2004); Institute for Problems of Materials Science of NAS of Ukraine, postgraduate studies (2004-2008). Ph.D. in Chemical sciences (2010).

Research area: chemistry of carbon nanomaterials and materials science hydrogen (synthesis, properties and applications), carbon and hydrogen plasma, the study features of the processes of formation of carbon nanostructures, hydrogen materials science, the use of materials as hydrogen storage systems.

Publications: 96, chapters in monographs and 4 patents.



M. T. Gabdullin
Kazah National University by Al-Farabi, Almaty
Kazakhstan

Information about the author: D.Sc. (chemistry), professor, the head of department of Medicinal Chemistry of the Institute of Molecular Biology and Genetics of the NAS of Ukraine.

Education: Taras Shevchenko National University of Kiev; M.Sc. in Chemistry of Natural Compounds; postgraduate course at Novosibirsk Institute of Bioorganic Chemistry, PhD degree in Chemistry (1993).

Research area: rational design of protein kinase inhibitors with the aid of organic chemistry, computer modeling and biochemical screening; development of fluorescent dyes for biopolymer detection.

Publications: about 400.



N. F. Javadov
National Aviation Academy of Azerbaijan, Baku
Azerbaijan

Information about the author: D.Sc. (chemistry), professor, head of the department of Chemistry of Functional Inorganic Materials of A.V. Bogatsky Physico-Chemical Institute of NAS of Ukraine.

Education: Taras Shevchenko Kyiv National University with degree of Chemistry; postgraduate studies (1971–1975).

Research area: inorganic compounds; solidstate interactions; nanostructuring; saline systems; materials for interference optics.

Publications: 420.



T. N . Veziroglu
University of Miami, Miami
United States

FL, 33155

Information about the author: associate professor, researcher of laboratory no. 67 “Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation” in Institute for Problems of Materials Science of NAS of Ukraine; associate professor at the National Technical University of Ukraine (KPI) (1975 till this time).

Education: Novosibirsk State University, chemist (1964-1969); Institute for Problems of Materials Science of NAS of Ukraine, postgraduate studies (1971-1974); Ph.D. (chemistry) (1975).

Research area: high temperature materials and carbon nanostructures (synthesis, properties and application).

Publications: more than 100, 3 patents.

 



References

1. Yamada T., Jung D.Y., Sawada R., Matsuoka A., Nakaoka R., Tsuchiya T. Effects intracerebral microinjection and intraperitoneal injection of [60]fullerene on brain functions differ in rats // J. Nanosci Nanotechnol. 2008. Vol. 8, No 8. P. 3973–3980.

2. Yamada T., Nakaoka R., Sawada R., Matsuoka A., Tsuchiya T. Effects of intracerebral microinjection of hydroxylated-[60]fullerene on brain monoamine concentrations and locomotor behavior in rats // J. Nanosci. Nanotechnol. 2010. Vol. 10, No 1. P. 604–611.

3. Sayes C.M., Fortner J.D., Guo W., Lyon D., Boyd A.M., Ausman K.D., Tao Y.J., Sitharaman B., Wilson L.J., Hughes J.B., West J.L., Colvin V.L. The differential cytotoxicity of water-soluble fullerenes // Nano Letters. 2004. Vol. 4, No 10. P. 1881–1887.

4. Sayes C.M., Marchione A.A., Reed K.L., Warheit D.B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles // Nano Lett. 2007. Vol. 7, No 8. P. 2399–2406.

5. Yamawaki H., Iwai N. Cytotoxicity of watersoluble fullerene in vascular endothelial cells // Am. J. Physiol. Cell Physiol. 2006. Vol. 290, No 6. P. C1495– C1502.

6. Usenko C.Y., Harper S.L., Tanguay R.L. In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish // Carbon. 2007. Vol. 45, No 9. P. 1891–1898.

7. Прилуцька С.В., Ротко Д.М., Прилуцький Ю.І., Рибальченко В.К. Токсичність вуглецевих наност- руктур у системах in vitro та in vivo // Токсикологія наноструктур. 2012. № 3–4. С. 49–57. Prilucka S.V., Rotko D.M., Prilucʹkij Yu.Ì., Ribalʹčenko V.K. Toksičnìstʹ vuglecevih nanostruktur u sistemah in vitro ta in vivo. Toksikologìâ nanostruktur, 2012, no 3–4, pp. 49–57 (in Ukr.).

8. Kolosnjaj J., Szwarc H., Moussa F. Toxicity studies of fullerenes and derivatives // Adv. Exp. Med. Biol. 2007. Vol. 620. P. 168–180. In: Bio-Applications of Nanoparticles, edited by Warren C.W. 2007. Landes Bioscience and Springer Science + Business Media. P.168–180.

9. Ширинкин С.В., Волкова Т.О., Немова Н.Н. III 64 Медицинские технологии. Перспективы использования фуллеренов в терапии болезней органов дыхания. Петрозаводск: Карельский научный центр РАН, 2009. 183 с. Shirinkin S.V., Volkova T.O., Nemova N.N. III 64 Medicinskie tehnologii. Perspektivy ispolʹzova-niâ fullerenov v terapii boleznej organov dyhaniâ. (ed. prof. Pokrovskij M.V.). Petrozavodsk: Karelʹskij naučnyj centr RAN Publ., 2009 (in Russ.).

10. Oberdörster E. http://www.sciencedirect.com/science/article/pii/S00086 22305006688 - cor1mailto:eoberdor@smu.edu, Zhu S., Blickley T.M., McClellan-Green P., Haasch M.L. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms // Carbon. 2006– Vol. 44, No 6– P. 1112–1120.

11. Snow S.D., Kim K.C., Moor K.J., Jang S.S., Kim J-H. Functionalized fullerenes in water: A closer look // Environ. Sci. Technol. 2015. Vol. 49, No 4. P. 2147–2155.

12. Petersen E.J., Henry T.B. Ecotoxicity of fullerenes and carbon nanotubes: A critical review of evidence for nano-size effects // Am. Chem. Soc. 2011. Vol. 1079. Chap. 5. P. 103–119.

13. Lovern S.B., Strickler J.R., Klaper R. Behavioral and Physiological Changes in Daphnia magna when Exposed to Nanoparticle Suspensions (Titanium Dioxide, Nano-C60, and C60HxC70Hx) // Environ. Sci. Technol. 2007. Vol. 41, No 12. P. 4465–4470.

14. Wu J., Goodwin D.G. Jr., Peter K.., Benoit D., Li W., Fairbrother D.H. and Fortner J.D. Photo￾Oxidation of hydrogenated fullerene (fullerene) in water // Environ. Sci. Technol. Lett. 2014. Vol. 1, No 12. P. 490–494.

15. Avanasi R., Jackson W.A., Sherwin B., Mudge J.F. and Anderson T.A. C60 fullerene soil sorption, biodegradation, and plant uptake // Environ. Sci. Technol. 2014. Vol. 48, No 5. P. 2792–2797.

16. Valavanidis A., Vlachogianni T. Nanomaterials and nanoparticles in the aquatic environment: Toxicological and ecotoxicological risks // Science advances on Environment, Toxicology & Ecotoxicology issues, Creece. 2010. P. 1–10.

17. Шипелин В.А., Авреньева Л.И., Гусева Г.В., Трушина Э.Н., Мустафина О.К., Селифанов А.В., Сото С.Х., Мальцев Г.Ю., Гмошинский И.В., Хотимченко С.А. Характеристика пероральной токсичности фуллерена С60 для крыс в 92-дневном эксперименте // Вопр. питания. 2012. Т. 81, № 5. С. 20–27. Shipelin V.A., Avreneva L.I., Guseva G.V., Trushina È.N., Mustafina O.K., Selifanov A.V., Soto S.H., Malʹcev G.Yu., Gmoshinsky I.V., Hotimchenko S.A. Harakteristika peroralʹnoj toksičnosti fullerena C60 dlâ krys v 92-dnevnom èksperimente Vopr. pitaniâ, 2012, vol. 81, no 5, pp. 20–27 (in Russ.).

18. Шипелин В.А., Гмошинский И.В., Тутельян В.А. Исследование стабильности фуллерена С60 в биологических субстратах с использованием модельной системы in vitro // Российские нанотехноло- гии. 2013. Т. 8, № 11–12. С. 74–78. Shipelin V.A., Gmoshinsky I.V., Tutelyan V.A. Issledovanie stabilʹnosti fullerena C60 v biologičeskih substratah s ispolʹzovaniem modelʹnoj sistemy in vitro. Rossijskie nanotehnologii, 2013, v. 8, no 11–12, pp. 74– 78 (in Russ.).

19. Folkmann J.K., Risom L., Jacobsen N.R., Wallin H., Loft S., Møller P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and singlewalled carbon nanotubes // Environ Health Perspect. 2009. Vol. 117, No 5. P. 703–708.

20. Park E.J., Roh J., Kim Y., Park K. Induction of inflammatory responses by carbon fullerene (C60) in cultured RAW264.7 cells and in intraperitoneally injected mice // Toxicol Res. 2010. Vol. 26, No 4. P. 267–273.

21. Johnston H.J., Hutchison G.R., Christensen F.M., Aschberger K., Stone V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity // Toxicological Sciences. 2010. Vol. 114, No 2. P. 162–182.

22. Fujita K., Morimoto Y., Ogami A., Myojyo T., Tanaka I., Shimada M., Wang W.N., Endoh S., Uchida K., Nakazato T., Yamamoto K., Fukui H., Horie M., Yoshida Y., Iwahashi H., Nakanishi J. Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles // Toxicology. 2009. Vol. 258. P. 47–55.

23. Usenko C.Y., Harper S.L., Tanguay R.L. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol // Appl. Pharmacol. 2008. Vol. 229, No 1. P. 44–55.

24. Han B., Karim M.N. Cytotoxicity of aggregated fullerene C60 particles on CHO and MDCK cells // Scanning. 2008. Vol. 30. P. 213–220.

25. Rajagopalan P., Wudl F., Schinazi R.F., Boudinot F.D. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob // Agents Chemotherapy. 1996. Vol. 40, No 10. P. 2262–2265.

26. Rancan F., Rosan S., Boehm F. http://www.sciencedirect.com/science/article/pii/S10111 34402003202 - COR1mailto:fritz.boehm@charite.de, Cantrell A., Brellreich M., Schoenberger H., Hirsch A., Moussa F. Cytotoxicity and photocytotoxicity of a dendritic C60 mono-adduct and a malonic acid C60 trisadduct on Jurkat cells // J. Photochem. Photobiol. B: Biology. 2002. Vol. 67, No 3. P. 157–162.

27. Yamago S., Tokuyama H., Nakamura E., Kikuchi K., Kananishi S., Sueki K., Nakahara H., Enomoto S., Ambe F. In vivo biological behavior of a watermiscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity // Chem. Biol. 1995. Vol. 2, No 6. P. 385–389.

28. Zhao X., Striolo A., Cummings P.T. C60 binds to and deforms nucleotides. // Biophys. J. 2005. Vol. 89, No 6. P. 3856–3862.

29. Xu X., Wang X., Li Y., Wang Y., Yang L. A large-scale association study for nanoparticle C60 uncov￾ers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA // Nucleic Acids Res. 2012. Vol. 40, No 16. P. 7622–7632.

30. Bosi S., Feruglio L., Da Ros T., Spalluto G., Gregoretti B., Terdoslavich M., Decorti G., Passamonti S., Moro S., Prato M. Hemolytic effects of water-soluble fullerene derivatives // J. Med. Chem. 2004,. Vol. 47, No 27. P. 6711–6715.

31. Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ // Health Perspect. 2004. Vol. 112, No 10. P. 1058–1062.

32. Zhu S., Oberdörster E., Haasch M.L. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow // Marine Environmental Research. 2006. Vol. 62, No 1. P. S5–S9.

33. Fortner J.D., Lyon D.Y., Sayes C.M., Boyd A.M., Falkner J.C., Hotze E.M., Alemany L.B., Tao Y.J., Guo W., Ausman K.D., Colvin V.L., Hughes J.B. C60 in water: Nanocrystal formation and microbial response // Environ. Sci. Technol. 2005. Vol. 39, No 11. P. 4307–4316.

34. Baun A. http://www.sciencedirect.com/science/article/pii/S01664 45X07004250 - cor1mailto:anb@er.dtu.dk, Sørensen S.N., Rasmussen R.F., Hartmann N.B., Koch C.B. http://www.sciencedirect.com/science/article/pii/S01664 45X07004250 - aff2 Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60 // Aquatic Toxicology. 2008. Vol. 86, No 3. P. 379–387.

35. Шипелин В.А. Изучение тканевого распределения фуллеренов в эксперименте и их токсиколого-гигиеническая характеристика. Диссертация. Москва. 2014. Shipelin V.A. Izučenie tkanevogo raspredeleniâ fullerenov v èksperimente i ih toksikologogigieničeskaâ harakteristika: Dissertation. Moscow, 2014 (in Russ.).

36. Yan X.M., Zha J.M., Shi B.Y., Wang D.S., Wang Z.J., Tang H.X. In vivo toxicity of nano-C60 aggregates complex with atrazine to aquatic organisms // Chinese Science Bulletin. 2010. Vol. 55, No 4–5. P. 339–345

37. Vlachogianni T., Valavanidis A. Nanomaterials: Environmental pollution, ecolological risks and adverse health effects. Nano Science and Nano Technology // Trade Science Inc. India. 2014. Vol. 8, No 6. P. 208–226.

38. Глушкова А.В., Радилов А.С., Рембовский В.Р. Нанотехнологии и нанотоксикология – взгляд на проблему. Токсикологический вестник, 2007. Glushkova A.V., Radilov A.S., Rembovskij V.R. Nanotehnologii i nanotoksikologiâ – vzglâd na problemu. Toksikologičeskij vestnik, 2007 (in Russ.).

39. Evaluation of an application to use Fullerene C60 as a food additive. Opinion of the Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food and Cosmetics of the Norwegian Scientific Committee for Food Safety. 17.02.10. Doc.#10–406-5 final. P. 1–7.

40. Isakovic A., Markovic Z., Todorovic-Markovic B., Nikolic N., Vranjes-Djuric S., Mirkovic M., Dramicanin M., Harhaji L., Raicevic N., Nikolic Z., Trajkovic V. http://toxsci.oxfordjournals.org/content/91/1/173.short - target-5 Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene // Toxicological Sciences. 2006. Vol. 91, No 1. P. 173–183.

41. Rouse J.G., Yang J., Barron A.R., Monteiro-Riviere N.A. Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes // Toxicology in Vitro. 2006. Vol. 20, No 8. P. 1313–1320.

42. Colvin V.L. http://www.nature.com/nbt/journal/v21/n10/abs/nbt875.h tml - a1The potential environmental impact of engineered nanomaterials // Nature Biotechnology. 2003. Vol. 21, No 10. P. 1166–1170.

43. Li Q., Xie B., Hwang Y.S., Xu Y. Kinetics of C60 Fullerene dispersion in water enhanced by natural organic matter and sunlight // Environ. Sci. Technol. 2009. Vol. 43, No 10. P. 3574–3579.

44. Saathoff J.G., Inman A.O., Xia X.R., Riviere J.E., Monteiro-Riviere N.A. In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells // Toxicology in Vitro. 2011. Vol. 25, No 8. P. 2105–2112.

45. Johnson-Lyles D.N., Peifley K., Lockett S., Neun B.W., Hansen M., Clogston J., Stern S.T.http://www.sciencedirect.com/science/article/pii/S0041 008X10002814 -cr0005mailto:sternstephan@mail.nih.gov, McNeil S.E. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction // Toxicology and Applied Pharmacology. 2010. Vol. 248, No 3. P. 249– 258.

46. Aschberger K. http://www.sciencedirect.com/science/article/pii/S0273230 010001443 - cor1mailto:karin.aschberger@ec.europa.eu, Johnston H.J., Stone V., Aitken R.J., Tran C.L., Hankin S.M., Peters S.A.K., Christensen F.M. Review of fullerene toxicity and exposure – Appraisal of a human health risk assessment, based on open literature // Regulatory Toxicology and Pharmacology. 2010. Vol. 58, No 3. P. 455–473.

47. Shimizu K.mailto:kshimizu@nihs.go.jp, Kubota R. mailto:reijik@nihs.go.jp, Kobayashi N. mailto:norihiro.kobayashi@nihs.go.jp, Tahara M. mailto:tahara@nihs.go.jp, Sugimoto N. mailto:nsugimot@nihs.go.jp, Nishimura T., mailto:t.nishimura@thu.ac.jp Ikarashi Y. Cytotoxic effects of hydroxylated fullerenes in three types of liver cells // Materials. 2013. Vol. 6, No 7. P. 2713–2722.

48. Wielgus A.R., Zhao B., Chignell C.F., Hu D.N., Roberts J.E. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells // Toxicol. Appl. Pharmacol. 2010. Vol. 242. P. 79–90.

49. Roberts J.E., Wielgus A.R., Boyes W.K., Andley U., Chignell C.F. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells // Toxicol. Appl. Pharmacol. 2008. Vol. 228, No 1. P. 49–58.

50. Su Y., Xu J.-y., Shen P., Li J., Wang L., Li Q., Li W., Xu G.-t., Fan C., Huang Q. Cellular uptake and cytotoxic evaluation of fullerenol in different cell lines // Toxicology. 2010. Vol. 269. P. 155–159.

51. Manzetti S., Behzadi H., Otto A., van der Spoel D. Fullerenes toxicity and electronic properties // Environ. Chem. Lett. 2013. Vol. 11, No 2. P. 105–118.

52. Nakagawa Y., Suzuki T., Ishii H., Nakae D., Ogata A. Cytotoxic effects of hydroxylated fullerenes on isolated rat hepatocytes via mitochondrial dysfunction // Arch. Toxicol. 2011. Vol. 85. P. 1429–1440.

53. Kubota R., Tahara M., Shimizu K., Sugimoto N., Hirose A., Nishimura N. Time-dependent variation in the biodistribution of C60 in rats determined by liquid chromatography-tandem mass spectrometry // Toxicol. Lett. 2011. Vol. 206. P. 172–177.

54. Monteiro-Riviere N.A., Inman A.O., Ryman-Rasmussen J.P. Dermal effects of nanomaterials (chapter 19). In: Monteiro-Riviere N.A., Tran C.L., eds. Nanotoxocology. Characterization, Dosing and Health Effecrs. New York: Informa Healthcare. 2007. P. 317–337.

55. Trpkovic A, Todorovic-Markovic B, Trajkovic V. Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress // Arch Toxicol. 2012. Vol. 86, No 12. P. 1809– 1827.

56. Baker G.L., Gupta A., Clark M.L., Valenzuela B.R., Staska L.M., Harbo S.J., Pierce J.T., Dill J.A. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles // Toxicological Sciences, 2008, Vol. 101, No 1. P. 122–131.

57. Gelderman M.P., Simakova O., Clogston J.D., Patri A.K., Siddiqui S.F., Vostal A.C., Simak J. Adverse effects of fullerenes on endothelial cells: fullerenol C60(OH)24 induced tissue factor and ICAM-I membrane expression and apoptosis in vitro // Int. J. Nanomedicine. 2008. Vol. 3, No 1. P. 59–68.

58. Fernandes A.L.C., Waissmann W. Interactions of carbon nanotubes and fullerenes with the immune system of the skin and the possible implications related to cutaneous nanotoxicity // Vigilancia Sanitaria em Debate. 2013. Vol. 1, No 4. P. 89–99.

59. Ema M., Matsuda A., Kobayashi N., Naya M., Nakanishi J. Dermal and ocular irritation and skin sensitization studies of fullerene C60 nanoparticles // Cutan Ocul Toxicol. 2013. Vol. 32, No 2. P. 128–134.

60. Xia X.R., Monteiro-Riviere N.A., Riviere J.E. Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents // Toxicol. Appl. Pharmacol. 2010. Vol. 242, No 1. P. 29–37.

61. Каркищенко Н.Н. Нанобезопасность: новые подходы к оценке рисков и токсичности наноматериалов // Биомедицина. 2009. Т. 1, № 1. С. 5–27. Karkishenko N.N. Nanobezopasnostʹ: novye podhody k ocenke riskov i toksičnosti nanomaterialov. Biomedicina, 2009, vol. 1, no 1, pp. 5–27 (in Russ.).

62. Орлова М.А., Трофимова Т.П., Орлов А.П., Шаталов О.А., Свистунов А.А., Наполов Ю.К., Чехонин В.П. Фуллерены и оксидативный стресс // Новые направления медицинской науки. 2012. Т 4. С. 11–15. Orlova M.A., Trofimova T.P., Orlov A.P., Sha￾talov O.A., Svistunov A.A., Napolov Yu.K., Chehonin V.P. Fullereny i oksidativnyj stress. Novye napravleniâ medicinskoj nauki, 2012, vol. 4, pp. 11–15 (in Russ.).

63. Латышевская Н.И., Стрекалова А.С. Экологические проблемы развития нанотехнологий // Вести Волгогр. Гос. Ун-та, Сер.3, Экон. Экол. 2011. Т. 1, № 18. С. 224–230. Latyshevskaya N.I., Strekalova A.S. Èkologičeskie problemy razvitiâ nanotehnologij. Vesti Volgogr. Gos. Un-ta, Ser.3, Èkon. Èkol., 2011, vol. 1, no 18, pp. 224–230 (in Russ.).

64. Сейфулла Р.Д., Ким Е.К. Проблемы токсичности нанофармакологических препаратов // Экспериментальная и клиническая фармакология. 2013. Т. 76, № 2. С. 43–48. Sejfulla R.D., Kim E.K. Problemy toksičnosti nanofarmakologičeskih preparatov. Èksperimentalʹnaâ i kliničeskaâ farmakologiâ, 2013, vol. 76, no 2, pp. 43–48 (in Russ.).

65. Фатхутдинова Л.М., Халиуллин Т.О., Залялов Р.Р. Токсичность искусственных наночастиц // Казанский медицинский журнал. 2009. Т. 90, № 4. С. 578–584. Fathutdinova L.M., Haliullin T.O., Zalyalov R.R. Toksičnostʹ iskusstvennyh nanočastic. Kazanskij medicinskij žurnal, 2009, vol. 90, no 4, pp. 578–584 (in Russ.).

66. Шипелин В.А., Арианова Е.А., Трушина Э.Н., Авреньева Л.И., Батищева С.Ю., Черкашин А.В., Сото С.Х., Лашнева Н.В., Гмошинский И.В., Хотимченко С.А. Токсиколого-гигиеническая характеристика фуллерена С60 при его введении в желудочно-кишечный тракт крыс // Гигиена и санитария. 2012. № 2. С. 90–94. Shipelin V.A., Arianova E.A., Trushina È.N., Avreneva L.I., Batisheva S.Yu., Cherkashin A.V., Soto S.H., Lashneva N.V., Gmoshinsky I.V., Hotimchenko S.A. Toksikologo-gigieničeskaâ harakteristika fulle-rena C60 pri ego vvedenii v želudočno-kišečnyj trakt krys. Gigiena i sanitariâ, 2012, no 2, pp. 90–94 (in Russ.).

67. Sera N., Tokiwa H., Miyata N. Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides // Carcinogenesis. 1996. Vol. 17, No 10. P. 2163–2169.

68. Niwa Y., Iwai N. Genotoxicity in cell lines induced by chronic exposure to water-soluble fullerenes using micronucleus test // Environ. Health Prev. Med. 2006. Vol. 11, No 6. P. 292–297.

69. Xu A., Chai Y., Nohmi T., Hei T.K. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells // Particle and Fibre Toxicology. 2009. Vol. 6. P. 3–16.

70. Dhawan A., Taurozzi J.S.,Pandey A.K., Shan W., Miller S.M., Hashsham S.A., Tarabara V. V. Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity // Environ. Sci. Technol. 2006. Vol. 40, No 23. P. 7396–7401.

71. Фазылов С.Д. Органические производные фуллерена – новый класс соединений с перспективой использования в медицине // Химия. 2014. Т. 5, № 5. С. 41–49. Fazylov S.D. Organičeskie proizvodnye fullere￾na – novyj klass soedinenij s perspektivoj is-polʹzovaniâ v medicine. Himiâ, 2014, vol. 5, no. 5, pp. 41–49 (in Russ.).

72. Бабынин Э. В., Мухитов А.Р., Губская В.П., Нуретдинов И. А., Румянцева Н.И. Генетические эффекты 1-метил-2[бис(2хлорэтил)аминофенил] 3,4- фуллеро [C60] пирролидина и 1-метил-2[N- метил(2хлорэтил)аминофенил] 3,4-фуллеро [C60] пирролидина // Proc. of VIII Int. conf. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. 2003. C. 900–903. Babynin È. V., Muhitov A.R., Gubskaya V.P., Nuretdinov I. A., Rumyantseva N.I. Genetičeskie èffekty 1-metil-2[bis(2hlorètil)aminofenil] 3,4-fullero [C60] pirrolidina i 1-metil-2[N-metil(2hlorètil)aminofenil] 3,4- fullero [C60] pirrolidina. Proc. of VIII Int. conf. Hydrogen Materials Science and Chemistry of Carbon Nano￾materials, 2003, pp. 900–903 (in Eng.).

73. Бабынин Э. В., Нуретдинов И. А., Губская В.П., Барабанщиков Б. И. Изучение мутагенной активности фуллерена и некоторых его производных на примере His + реверсий у Salmonella typhimurium // Генетика. 2002. Т. 38, № 4. С. 359–363. Babynin È. V., Nuretdinov I. A., Gubskaya V.P., Barabanshchikov B. I. Izučenie mutagennoj aktivnosti fullerena i nekotoryh ego proizvodnyh na primere His + reversij u Salmonella typhimurium. Genetika, 2002, vol. 38, no 4, pp. 359–363 (in Eng.).

74. Takenaka S., Yamashita K., Takagi M., Hatta T., Tsuge O. Photo-induced DNA cleavage by watersoluble cationic fullerene derivatives // Chemistry Letters. 1999. Vol. 4. P. 321–322.

75. Takenaka S., Yamashita K., Takagi M., Hatta T., Tanaka A., Tsuge O. Study of the DNA interaction with water-soluble cationic fullerene derivatives // Chemistry Letters. 1999. Vol. 4. P. 319–320.

76. Nakamura E., Tokuyama H., Yamago S., Shiraki T., Sugiura Y. Biological Activity of Water-Soluble Fullerenes. Structural Dependence of DNA Cleavage, Cytotoxicity, and Enzyme Inhibitory Activities Including HIV-Protease Inhibition // Bulletin of the Chemical Society of Japan. 1996. Vol. 69. No. 8. P. 2143–2151.

77. Еропкин М.Ю., Пиотровский Л.Б., Еропкина Е.М., Думпис М.А., Литасова Е.В., Киселева О.И. Влияние агрегатного состояния и природы полимера-носителя на фототоксичность фуллерена С60 in vitro // Экспериментальная и клиническая фармакология. 2011. Т. 74, № 1. С. 28–31. Eropkin M.Yu., Piotrovskij L.B., Eropkina E.M., Dumpis M.A., Litasova E.V., Kiseleva O.I. Vliânie agregatnogo sostoâniâ i prirody polimeranositelâ na fototoksičnostʹ fullerena S60 in vitro, Èksperimen￾talʹnaâ i kliničeskaâ farmakologiâ, 2011, vol. 74, no 1, pp. 28–31 (in Russ.).

78. Markovic Z.,Trajkovic V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60) // Biomaterials. 2008. Vol. 29, No 26. P. 3561–3573.

79. Jacobsen N.R. , Pojana G., White P., Møller P., Cohn C.A., Korsholm K.S., Vogel U., Marcomini A., Loft S., Wallin H. Genotoxicity, Cytotoxicity, and Reactive Oxygen Species Induced by Single-Walled Carbon Nanotubes and C60 Fullerenes in the FE1- MutaTMMouse Lung Epithelial Cells // Environ. Mol. Mutagen. 2008. Vol. 49, No 6. P. 476–487.

80. Wang J., Wang M., Wang J., Wang X., Liu Y., Xu A. Review on the role of mitochondria in nanotoxicology // Chin. J. Appl. Environ. Biol. 2015. Vol. 21, No 4. P. 579–589.

81. Nakamura E., Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience // Acc. Chem. Res. 2003. Vol. 36, No 11. P. 807–815.

82. Hood E. Fullerenes and Fish Brains: Nanomaterials Cause Oxidative Stress // Environ. Health Perspect. 2004. Vol. 112, No 10. P. A568.

83. Haasch M. L., McClellan‐Green P., Oberdörster E. Consideration of the toxicity of manufactured nanoparticles // AIP Conf. Proc. 2005. Vol. 786. P. 586.

84. Zhu X., Zhu L., Lang Y., Chen Y. Oxidative stress and growth inhibition in the freshwater fish Carassius auratu induced by chronic exposure to sublethal fullerene aggregates // Environmental Toxicology and Chemistry. 2008. Vol. 27, No 9. P. 1979–1985.

85. Колесниченко А.В., Тимофеев М.А., Протопопова М.В. Токсичность наноматериалов – 15 лет исследований // Российские нанотехнологии. 2008. Т. 3, № 3–4. С. 54–61. Kolesnichenko A.V., Timofeev M.A., Protopopova M.V. Toksičnostʹ nanomaterialov – 15 let issledovanij. Rossijskie nanotehnologii, 2008, vol. 3, no 3–4, pp. 54–61 (in Russ.).

86. Tsuchiya T., Oguri I., Yamakoshi Y.N., Miyata N. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo // FEBS Lett. 1996. Vol. 393. P. 139–145.

87. Захаренко Л.П., Захаров И.K., Васюнина E.A., Kaрамышева T.В., Даниленко A.M., Никифоров A.A. Определение генотоксичности фуллерена C60 и фуллерола методом соматических мозаиков на клетках крыла Drosophila melanogaster и в SOS-хромотесте // Генетика. 1997. Т. 33, No 3. С. 405–409. Zaharenko L.P., Zaharov I.K., Vasyunina E.A., Karamysheva T.V., Danilenko A.M., Nikiforov A.A. Opredelenie genotoksičnosti fullerena C60 i fullerola metodom somatičeskih mozaikov na kletkah kryla Drosophila melanogaster i v SOS-hromoteste. Genetika, 1997, vol. 33, no 3, pp. 405–409 (in Russ.).

88. Troshina O.A., Troshin P.A., Peregudov A.S., Kozlovskiy V.I., Balzarini J., Lyubovskaya R.N. Chlorofullerene C60Cl6: a precursor for straightforward preparation of highly water-soluble polycarboxylic fullerene derivatives active against HIV // Org.Biomol.Chem. 2007. Vol. 5, No 17. P. 2783–2791.

89. Sergio M., Behzadi H., Otto A., Spoel D. Fullerenes toxicity and electronic properties // Environ. Chem. Lett. 2013. Vol. 11, No 2. Р. 105–118.

90. Fang J., Lyon D.Y., Wiesner M.R., Dong J., Alvarez P.J.J. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior // Environ. Sci. Technol. 2007. Vol. 41. P. 2636–2642.

91. Kamat J.P., Devasagayam T.P., Priyadarsini K.I., Mohan H., Mittal J.P. Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes // Chem.Biol.Interact. 1998. Vol. 114, No 3. P. 145–159.

92. Zhu X., Zhu L., Li Y., Duan Z., Chen W., Alvarez P.J.J. Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol // Environ. Toxicol. Chem. 2007. Vol. 26, No 5. P. 976–979.

93. Sayes C.M., Gobin A.M., Ausman K.D., Mendez J., West J.L., Colvin V.L. Nano-C60 cytotoxicity is due to lipid peroxidation // Biomaterials. 2005. Vol. 26. P. 7587–7595.

94. Nielsen G.D., Roursgaard M., Jensen K.A., Poulsen S.S., Larsen S.T. In vivo biology and toxicology of fullerenes and their derivatives // Basic Clin. Pharmacol. Toxicol. 2008. Vol. 103, No 3. P. 197–208.

95. Lyon D.Y., Alvarez P.J.J. Fullerene water suspension (nC60) exerts antibacterial effects via ROSindependent protein oxidation // Environ. Sci. Technol. 2008. Vol. 42, No 21. P. 8127–8132.

96. Lovern S.B., Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles // Environmental Toxicology and Chemistry. 2006. Vol. 25, No 4. P. 1132–1137.

97. Tao X., Fortner J.D., Zhang B., He Y., Chen Y., Hughes J.B. Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: evaluation of sublethal reproductive responses and accumulation // Chemosphere. 2009. Vol. 77, No 11. P.1482–1487.

98. Tervonen K., Waissi G., Petersen E.J., Akkanen J., Kukkonen J.V. Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in Daphnia magna // Environ. Toxicol. Chem. 2010. Vol. 29, No 5. P. 1072–1078.

99. Chae S.-R., Xiao Y., Badireddy A.R., Wiesner M.R., Kim J.-O. Aggregation state of fullerene nanoparticles: implications for reactivity, transport, and microbi￾al toxicity // In: Chemeca 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia, 18–21 September 2011. Barton, A.C.T.: Engineers Australia, 2011. P.209–218.

100. Wani M. Y., Hashim M. A., Nabi F., Malik M. A. Nanotoxicity: dimensional and morphological concerns // Advances in Physical Chemistry. 2011. Vol. 2011. Article ID 450912. 15 p.

101. Kim K.-T., Jang M.-H., Kim J.-Y., Kim S.D. Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos // Science of The Total Environment. 2010. Vol. 408, No 22. P. 5606–5612.

102. Пиотровский Л. Б. Будьте осторожны, следующая остановка "наноэра", или проблема токсичности наночастиц // Экологический вестник России. 2008. № 11. С. 31–32 . (Аннотация: О проблеме токсикологии фуллерена). Piotrovsky L. B. Budʹte ostorožny, sleduûŝaâ ostanovka "nanoèra", ili problema toksičnosti nanočastic. Èkologičeskij vestnik Rossii, 2008, no 11, pp. 31–32 . (Annotaciâ: O probleme toksikologii fullerena) (in Russ.).

103. Проданчук Н.Г., Балан Г.М. Нанотоксикология: состояние и перспективы исследований // Современные проблемы токсикологии. 2009. № 3–4. С. 4–20. Prodančuk N.G., Balan G.M. Nanotoksikologiâ: sostoânie i perspektivy issledovanij. Sovremennye prob￾lemy toksikologii, 2009, no 3–4, pp. 4–20 (in Eng.).

104. Бухаров А. Смерть с приставкой нано. 2012. Свидетельство о публикации №212120801793. Buharov A. Smertʹ s pristavkoj nano. 2012, Svidetelʹstvo o publikacii no. 212120801793 (in Russ.).

105. Лившиц В. Нанотоксикология. 2011. Свидетельство о публикации №211070300755. Livshits V. Nanotoksikologiâ. 2011, Svide￾telʹstvo o publikacii no. 211070300755 (in Russ.).

106. Ryan J.J., Bateman H.R., Stover A., Gomez G., Norton S.K., Zhao W., Schwartz L.B., Lenk R., Kepley C.L. Fullerene Nanomaterials Inhibit the Allergic Response // J. Immunolol. 2007. Vol. 179, No 1. P. 665–672.

107. Leroux J.-C. Injectable nanocarriers for biodetoxification // Nature Nanotechnol. 2007. Vol. 2, No 11. P. 679–684.

108. Yamakoshi Y., Umezawa N., Ryu A., Arakane K., Miyata N., Goda Y., Masumizu T., Nagano T. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2 * versus 1O2 // J. Am. Chem. Soc. 2003. Vol. 125, No 42. P. 12803–12809.

109. Jia G., Wang H., Yan L., Wang X., Pei R., Yan T., Zhao Y., Guo X. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene // Environ. Sci. Technol. 2005. Vol. 39, No 5. P. 1378–1383.

110. Foley S., Crowley C., Smaihi M., Bonfils C., Erlanger B.F., Seta P., Larroque C. Cellular localisation of a water-soluble fullerene derivative. Biochem. Bio￾phys. Res. Commun., 2002, Vol. 294, No 1, P. 116-119.

111. Totsuka Y., KatoT., Masuda S., IshinoK., Matsumoto Y., Goto S., Kawanishi M., Yagi T., Wakabayashi K. In Vitro and In Vivo genotoxicity induced by fullerene (C60) and kaolin // Genes and Environment. 2011. Vol. 33, No 1. P. 14–20.

112. Casals E., Vázquez-Campos S., Bastús N.G., Puntes V. Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems // Trends in Analytical Chemistry. 2008. Vol. 27, No 8. P. 672–683.

113. Pickering K.D., Wiesner M.R. Fullerolsensitized production of reactive oxygen species in aqueous solution // Environ. Sci. Technol. 2005. Vol. 39, No 5. P. 1359–1365.

114. Spohn P., Hirsch C., Hasler F., Bruinink A., Krug H.F., Wick P. C60 fullerene: A powerful antioxidant or a damaging agent? The importance of an indepth material characterization prior to toxicity assays // Environmental Pollution. 2009. Vol. 157, No 4. P. 1134–1139.

115. Al-Subiai S.N., Arlt V.M., Frickers P.E., Readman J.W., Stolpe B., Lead J.R., Moody A.J., Jha A.N. Merging nano-genotoxicology with eco-genotoxicology: an integrated approach to determine interactive genotoxic and sub-lethal toxic effects of C60 fullerenes and fluoranthene in marine mussels // Mytilus sp. Mutat Res. 2012. Vol. 745, No 1–2. P. 92–103.

116. Cha Y.J., Lee J., Choi S.S. Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans // Chemosphere. 2012. Vol. 87, No 1. P. 49–54.

117. Rim K.-T., Song S.-W., Kim H.-Y. Oxidative DNA Damage from Nanoparticle Exposure and Its Application to Workers' Health: A Literature Review // Saf. Health Work. 2013. Vol. 4, No 4. P.177–186.

118. Kharlamov O., Bondarenko M., Kharlamova G., Fomenko V., Skripnichenko A. Nanoecological security of foodstuffs and human. In: Nanotechnology in the Security Systems. Bonca J., Kruchinin S. (eds.) // Proc. of NATO ARW in Yalta, Ukraine in Sept. 29–Oct. 3, 2013. Ch. 19. Springer, Dordrecht, 2014. P. 215–230.

119. Чекман І.С., Горчакова Н.О., Раслін К.Б. На- нокарбон: фармакологічні та токсикологічні властивості // Вісник НАН України. 2015. № 7. С. 41–52. Chekman Ì.S., Gorchakova N.O., Raslìn K.B. Nanokarbon: farmakologìčnì ta toksikologìčnì vlastivostì. Vìsnik NAN Ukraïni, 2015, no 7, pp. 41–52 (in Ukr.).

120. Чекман І.С., Сердюк А.М., Кундієв Ю.І., Трахтенберг І.М., Каплінський С.П., Бабій В.Ф. Нанотоксикологія: напрямки досліджень // Довкілля та здоров'я. 2009. № 1. С. 3–7. Chekman Ì.S., Serdyuk A.M., Kundìêv Yu.Ì., Trahtenberg Ì.M., Kaplìnsky S.P., Babìy V.F. Nanotoksikologìâ: naprâmki doslìdženʹ. Dovkìllâ ta zdorov'â, 2009, no 1, pp. 3–7 (in Ukr.).

121. Завгородній І. В., Дмуховська Т. М., Сидоренко М. О., Семенова Н. В. Проблеми гігієни праці та безпеки у виробництві та використанні наночастинок і нанотехнологій // Медицина сьогодні і зав- тра. 2013. № 3. С. 52–56. Zavgorodnìy Ì. V., Dmuhovsʹka T. M., Sidorenko M. O., Semenova N. V. Problemi gìgìêni pracì ta bezpeki u virobnictvì ta vikoristannì nanočastinok ì na￾notehnologìj. Medicina sʹogodnì ì zavtra, 2013, no 3, pp. 52–56 (in Ukr.).

122. Лысцов В.Н., Мурзин Н.В. Проблемы безопасности нанотехнологий. М.: МИФИ, 2007. Lyscov V.N., Murzin N.V. Problemy bezopasnosti nanotehnologij. 2007, Moscow: MIFI (in Russ.).

123. Ikeda A., Doi Y., Nishiguchi K., Kitamura K., Hashizume M., Keiichiro J.-i., Yogo K., Ogawa T., Takeya T. Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60]fullerene // Org. Biomol. Chem. 2007. Vol. 5. P. 1158–1160.

124. Зайцев В. Опасность наноматериалов для здоровья: миф или новая угроза. ZOOM, Наука, Ста- тьи. 2011. Zaitsev V. Opasnostʹ nanomaterialov dlâ zdo￾rovʹâ: mif ili novaâ ugroza. ZOOM, Nauka, Statʹi Publ., 2011 (in Russ.).

125. Бабынин Э.В., Нуретдинов И.А., Губская В.П., Барабанщиков Б.И. Изучение мутагенной активности фуллерена и некоторых его производных на примере His+ реверсий у Salmonella typhimurium // Генетика микроорганизмов. 2002. Т. 38, № 4. С. 453–457. Babynin È.V., Nuretdinov I.A., Gubskaya V.P., Barabanŝikov B.I. Izučenie mutagennoj aktivnosti fullerena i nekotoryh ego proizvodnyh na primere His+ reversij u Salmonella typhimurium. Genetika mikroorga￾nizmov, 2002, vol. 38, no 4, pp. 453–457 (in Russ.).

126. Моргалёв Ю.Н., Моргалёва Т.Г., Хоч Н.С., Моргалёв С.Ю. Основы безопасности при обращении с наноматериалами. Курс лекций. Томск, 2010. Morgalëv Yu.N., Morgalëva T.G., Hoch N.S., Morgalëv S.Yu. Osnovy bezopasnosti pri obraŝenii s nanomaterialami. Kurs lekcij. Tomsk, 2010 (in Russ.).

127. Радилов А.С., Глушкова А.В., Дулов С.А. Экспериментальная оценка токсичности и опасности нано-размерных материалов // Нанотехнологии. Экология. Производство: научно-производственный журнал. 2009. Т. 1, № 1. С. 86–89. Radilov A.S., Gluškova A.V., Dulov S.A. Èksperimentalʹnaâ ocenka toksičnosti i opasnosti nanorazmernyh materialov, Nanotehnologii. Èkologiâ. Proizvodstvo: naučno-proizvodstvennyj žurnal, 2009, vol. 1, no 1, pp. 86–89 (in Russ.).

128. Глушкова А.В., Радилов А.С., Дулов С.А. Особенности пролявления токсичности наночастиц // Гигиена и санитария. 2011. № 2. С. 81–86. Glushkova A.V., Radilov A.S., Dulov S.A. Osobennosti prolâvleniâ toksičnosti nanočastic. Gigiena i sanitariâ, 2011, no 2, pp. 81–86 (in Russ.).

129. Sergio M., Behzadi H., Otto A., Spoel D. Fullerenes toxicity and electronic properties // Environ. Chem. Lett. 2013. Vol. 11, No 2. Р. 105–118.

130. Santos S.M., Dinis A.M., Peixoto F., Ferreira L., Jurado A.S., Videira R.A. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics // J. Toxicol Sci. 2014. Vol. 138, No 1. Р. 117–129.

131. Song M.Y., Yuan S.P., Yin J.F., Wang X.L., Meng Z.H., Wang H.L., Jiang G.B. Size-dependent toxicity of nano-C-60 aggregates: more sensitive indication by apoptosis-related Вax translocation in cultured human cells // Environ. Sci. Technol. 2012. Vol.46, No 6. Р. 3457–3464.

132. Cai X.Q., Hao J.J., Zhang X.Y., Yu B.Z., Ren J.M., Luo C., Li Q.N., Huang Q., Shi X.G., Li W.X., Liu J.K. The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation￾induced immune and mitochondrial dysfunction // Toxicol. Appl. Pharmacol. 2010. Vol. 243, No 1. Р. 27–34.

133. Singh N., Manshian B., Jenkins G.J., Griffiths S.M., Williams P.M., Maffeis T.G.G., Wright C.J., Doak S.H. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials // Biomaterials. 2009. Vol. 30, No 23–24. P. 3891–3914.

134. Borm P., Klaessig F. C., Landry T. D., Moudgil B., Pauluhn J, Thomas K., Trottier R., Wood S. Research Strategies for Safety Evaluation of Nanomaterials, Part V: Role of Dissolution in Biological Fate and Effects of Nanoscale Particles // Toxicological Sciences. 2006. Vol. 90, No 1. Р. 23–32.

135. Luther W. (ed.). Technological analysis, industrial application of nanomaterials – chances and risks. Future Technologies Division, VDI Tchnologiezentrum GmbH, Dusseldorf, Germany.

136. Thomas K., Sayre P. Research Strategies for Safety Evaluation of Nanomaterials, Part I: Evaluating the Human Health Implications of Exposure to Nanoscale Materials // Toxicological Sciences. 2005. Vol. 87, No 2. Р. 316–321.

137. National Institute for Occupational Safety and Health. U.S. Department of Health & Human Services, 2004 http://www.cdc.gov/niosh/topics/nanotech/default.html

138. Maynard A.D. Nanotechnology: assessing the risks. Nanotoday, 2006, Vol. 1, No 2, P. 22–33.

139. Чекман И.С. Нанофармакология. К.: Задруга, 2011. Chekman I.S. Nanofarmakologiâ. K.: Zadruga Publ., 2011 (in Russ.).

140. Исламов Р.А. Токсичность наноматериалов // Нанометр. 2009. http://www.nanometer.ru/2009/01/24/12328081661266_ 55571.html. Islamov R.A. Toksičnostʹ nanomaterialov. Na￾nometr, 2009, Available at: http://www.nanometer.ru/2009/01/24/12328081661266_ 55571.html (in Eng.).

141. Ostiguy C., Lapointe G., Trottier M., Menard L., Cloutier Y., Boutin M., Antoun M., Normand Ch. Health effects of nanoparticles. Studies and research projects. IRSST. 2006.

142. Moussa F., Pressac M., Genin E., Roux S., Trivin F., Rassat A., Céolin R., Szwarc H. Quantitative analysis of C60 fullerene in blood and tissues by highperformance liquid chromatography with photodiodearray and mass spectrometric detection // J. Chromatogr. B Biomed. Sci. Appl. 1997. Vol. 696, No 1. P. 153–159.

143. Iwata N., Mukai T., Yamakoshi Y.N., Haraa S., Yanase T., Shoji M., Endo T., Miyata N. Effects of C60, a fullerene, on the activities of glutathione s-transferase and glutathione-related enzymes in rodent and human livers // Fullerene Science and Technology. 1998. Vol. 6, No 2. P. 213–226.

144. Nelson M.A., Domann F.E., Bowden G.T., Hooser S.B., Fernando Q., Carter D.E. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin // Toxicology and Industrial Health. 1993. Vol. 9, No 4. P. 623–630.

145. Chen H.H., Yu C., Ueng T.H., Chen S., Chen B.J., Huang K.J., Chiang L.Y. Acute and sub acute toxicity study of water-soluble polyalkylfulfonated C60 in rats // Toxil. Pathol. 1998. Vol. 26, No 1. P. 143–151.

146. Щур Д.В. Фізико-хімічні закономірності процесів синтезу, екстракції, кристалізації та засто- сування фуллерену С60. Автореферат дис. д-ра хімічних наук, Київ, 2014. Islamov R.A. Toksičnostʹ nanomaterialov. Nanometr, 2009, Available at: http://www.nanometer.ru/2009/01/24/12328081661266_ 55571.html (in Eng.)

147. Porter A. E., Muller K., Skepper J., Midgley P., Welland M. Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: Studied by high resolution electron microscopy and electron tomography // Acta Biomater. 2006. Vol. 2, No 4. P. 409–419.

148. Selvi B.R., Jagadeesan D., Suma B.S., Nagashankar G., Arif M., Balasubramanyam K., Eswaramoorthy M., Kundu T.K. Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo // Nano Lett. 2008. Vol. 8, No 10. P. 3182–3188.

149. Каркищенко Н.Н., Сахаров Д.С., Филиппов А.А., Соколов В.Б. Изменение cпектральной мощности ЭЭГ крыс после интраперитонеального введения фторсодержащих производных фуллерена – 60 // Биомедицина. 2009. № 1. С. 38–48. Karkishenko N.N., Saharov D.S., Filippov A.A., Sokolov V.B. Izmenenie cpektralʹnoj moŝnosti ÈÈG krys posle intraperitonealʹnogo vvedeniâ ftorsoderžaŝih proizvodnyh fullerena – 60. Biomedicina, 2009, no 1, pp. 38–48 (in Russ.).

150. Aoshima H., Saitoh Y., Ito S., Yamana S., Miwa N. Safety evaluation of highly purified fullerenes (HPFs): based on screening of eye and skin damage // J. Toxicol. Sci. 2009. Vol. 34, No 5. P. 555–562.

151. Гольдшлегер Н.Ф., Овсянникова Е.В., Лапшин А.Н., Ефимов О.Н., Любовская Р.Н., Алпатова Н.М. Электрохимическое поведение фулерена С60 и замещенных фулуренов, иммобилизованных на поверхности углерода // Электрохимия. 2006. Т. 42, № 7. С. 853–861. Golʹdšleger N.F., Ovsânnikova E.V., Lapšin A.N., Efimov O.N., Lûbovskaâ R.N., Alpatova N.M. Èlektrohimičeskoe povedenie fulerena C60 i zameŝennyh fulurenov, immobilizovannyh na poverhnosti ugleroda, Èlektrohimiâ, 2006, vol. 42, no. 7, pp. 853–861 (in Russ.).

152. Гольдшлегер Н.Ф., Овсянникова Е.В., Горячев А.Е., Трошин П.А., Алпатова Н.М. Электрохимия метанофулеренов, внедренных в пленки гидрофобных катионов аммония // Электрохимия. 2013. Т. 49, № 4. С. 367–379. Golʹdshleger N.F., Ovsyannikova E.V., Goryachev A.E., Troshin P.A., Alpatova N.M. Èlektrohimiâ me-tanofulerenov, vnedrennyh v plenki gidrofobnyh kationov ammoniâ. Èlektrohimiâ, 2013, vol. 49, no 4, pp. 367–379 (in Russ.).

153. Гольдшлегер Н.Ф., Шестаков А.Ф., Овсянникова Е.В., Алпатова Н.М. Формирование и функционирование электроактивных покрытий на основе фуллеренов и их производных. Роль нековалентных взаимодействий // Успехи химии. 2008. Т. 77, № 9. 870–891. Golʹdshleger N.F., Shestakov A.F., Ovsyannikova E.V., Alpatova N.M. Formirovanie i funkcionirovanie èlektroaktivnyh pokrytij na osnove fullerenov i ih proizvodnyh. Rolʹ nekovalentnyh vzaimodejstvij. Us￾pehi himii, 2008, vol. 77, no 9, pp. 870–891 (in Russ.).

154. Zhao X., Ng S., Heng B.C., Guo J., Ma L., Tan T.T.Y., Ng K.W., Loo S.C.J. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent // Arch. Toxycol. 2013. Vol. 87, No 6. P. 1037–1052.

155. Щур Д.В., Загинайченко С.Ю., Шульга Ю.М., Аникина Н.С., Полищук М.А. Изучение особенностей процесса высаливания фуллерита из насыщенного раствора С60 в толуоле. I. Ламинарное смешивание реагентов // Наносистеми, Наноматеріали, Нанотехнології. 2013. Т. 11, № 4. С. 815–832. Schur D.V., Zaginaichenko S.Yu., Shulga Yu.M., Anikina N.S., Polischuk M.A. Izučenie osobennostej processa vysalivaniâ fullerita iz nasyŝennogo rastvora C60 v toluole. I. Laminarnoe smešivanie reagentov. Nanosistemi, Nanomaterìali, Nanotehnologìï, 2013, vol. 11, no 4, pp. 815–832 (in Russ.).

156. Щур Д.В., Загинайченко С.Ю., Котко А.В., Аникина Н.С., Каменецкая Е.А.Изучение особенностей процесса высаливания фуллерена из насыщенного раствора С60 в толуоле. II. Турбулентное смешивание реагентов // Наносистеми, Наноматеріали, Нанотехнології. 2013. Т. 11, № 4. С. 832–861. Schur D.V., Zaginaichenko S.Yu., Kotko A.V., Anikina N.S., Kameneckaâ E.A.Izučenie osobennostej processa vysalivaniâ fullerena iz nasyŝennogo rastvora C60 v toluole. II. Turbulentnoe smešivanie reagentov. Nanosistemi, Nanomaterìali, Nanotehnologìï, 2013, vol. 11, no 4, pp. 832–861 (in Russ.).

157. Щур Д.В., Загинайченко С.Ю., Везироглу Т.Н. Особенности гидрирования фуллереновых молекул С60 и их трансформація // Наноматериалы и Наноструктуры. 2013. Т. 4, № 1. С. 14–24. Schur D.V., Zaginaichenko S.Yu., Veziroglu T.N. Osobennosti gidrirovaniâ fullerenovyh molekul C60 i ih transformacìâ. Nanomaterialy i Nanostruktury, 2013, vol. 4, no 1, pp. 14–24 (in Russ.).

158. Аникина Н.С., Щур Д.В., Загинайченко С.Ю., Кривущенко О.Я., Полищук М.А., Чимбай Л.Л. Закономерности растворения фуллерена С60 в полиметилзамещенных бензола // Наносистеми, Наноматеріали, Нанотехнології. 2013. Т.11, № 1. С. 173–192. Anikina N.S., Schur D.V., Zaginaichenko S.Yu., Krivushenko O.Ya., Polischuk M.A., Chimbay L.L. Zakonomernosti rastvoreniâ fullerena S60 v polimetilzameŝennyh benzola. Nanosistemi, Nanoma￾terìali, Nanotehnologìï., 2013, vol.11, no 1, pp. 173–192 (in Russ.).

159. Schur D.V., Zaginaichenko S.Yu., Veziroglu T.N., Javadov N.F The peculiarities of hydrogenation of fullerene molecules C60 and their transformation (chapter 17) // Proc. of NATO ARW on the Black Sea: Strategy for Addressing its Energy Resource Development and Hydrogen Energy Problems, Dordrecht, Netherlands: Springer, 2013. P. 191–204.

160. Аникина Н.С., Кривущенко О.Я., Мильто О.В., Золотаренко Е.П., Щур Д.В., Загинайченко С.Ю. Взаимодействие растворимых углеродных наноструктур с ароматическими растворителями // Наносистемы, Наноматериалы, Нанотехнологии. 2013. Т.11, № 1. С. 193–216. Anikina N.S., Krivushenko O.Ya., Milto O.V., Zolotarenko E.P., Schur D.V., Zaginaichenko S.Yu. Vzaimodejstvie rastvorimyh uglerodnyh nanostruktur s aromatičeskimi rastvoritelâmi. Nanosistemy, Nanomate￾rialy, Nanotehnologii, 2013, vol. 11, no 1, pp. 193–216 (in Eng.).

161. Schur D.V., Anikina N.S., Krivushchenko O.Ya., Zaginaichenko S.Yu., Kazimov G.A.,Zolotarenko A.D., Javadov N.F.,Veziroglu T.N.,Veziroglu A. Solubility of Fullerenes in Naftalan (chapter 18) // “The Black sea: strategy for addressing its energy resource development and hydrogen energy problems”. Dordrecht, Netherlands: Springer, 2013. P. 205–213.

162. Аникина Н.С., Щур Д.В., Кривущенко О.Я. Об эффекте упорядочения мета-нитроизомера – продукта реакции электрофильного нитрования монозамещенных бензола и закономерности растворения фуллерена С60 в монозамещенных бензола // Наносистеми, Наноматеріали, Нанотехнології. 2012. Т.10, № 4. С. 701–722. Anikina N.S., Schur D.V., Krivushenko O.Ya. Ob èffekte uporâdočeniâ meta-nitroizomera – produkta reakcii èlektrofilʹnogo nitrovaniâ monozameŝennyh benzola i zakonomernosti rastvoreniâ fullerena C60 v monozameŝennyh benzola. Nanosistemi, Nanomaterìali, Nanotehnologìï, 2012, vol. 10, no 4, pp. 701–722 (in Eng.).

163. Schur D.V., Zaginaichenko S.Yu., Savenko A.F., Bogolepov V.A. Experimental evaluation of total hydrogen capacity for fullerite // Int. Journal of Hydrogen Energy. 2011. Vol. 36, № 1. P. 1143–1151.

164. Schur D.V., Zaginaichenko S.Yu., Lysenko E.A., Golovchenko T.N., Javadov N.F.The forming peculiarities of C60 molecule // Carbon Nanomaterials in Clean Energy Hydrogen Systems. Dordrecht, Netherlands: Springer, 2008. P. 53–65.

165. Schur D.V., Zaginaichenko S.Yu.,Veziroglu T.N. Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60 // Int. Journal of Hydrogen Energy. 2008. Vol. 33, No 13. P. 3330–3345.

166. Schur D.V., Zaginaichenko S.Yu., Matysina Z.A. The special features of formation of carbon nanostructures, their classification and site on the state diagram of carbon // Carbon Nanomaterials in Clean Energy Hydrogen Systems. Dordrecht, Netherlands: Springer, 2008. P. 67–83.


Review

For citations:


Zaginaychenko S.Y., Chekman I.S., Schur D.V., Pomytkin A.P., Lavrenko V.A., Zolotarenko A.D., Yarmolyuk S.N., Kublanovskiy V.S., Kosygina I.M., Shevchenko A.M., Zinchenko V.F., Matysina Z.A., Gabdullin M.T., Javadov N.F., Veziroglu T.N. ABOUT FULLERENES AND THEIR DERIVATIVES TOXICITY. Alternative Energy and Ecology (ISJAEE). 2016;(7-8):69-92. (In Russ.) https://doi.org/10.15518/isjaee.2016.07-08.069-092

Views: 5065


ISSN 1608-8298 (Print)