Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

О термодинамических характеристиках гидрированных моно - и полиграфеновых наноструктур в связи с проблемой хранения водородав эко-автомобилях с топливными элементами

Аннотация

Рассматриваются аналитические результаты определения характеристик и механизмов термодинамической стабильности и соответствующих термодинамических характеристик ряда гидрированных моно- и полислойных графеновых наноструктур, а именно: 1) гидрированный (с обеих сторон) графен состава CH (теоретический графан и экспериментальный графан); 2) теоретический гидрированный (с одной из сторон) графен состава CH; 3) теоретический гидрированный (с одной из сторон) графен состава C2H (графон); 4) экспериментальные гидрированные эпитаксиальный графен, двухслойный эпитаксиальный графен и многослойный эпитаксиальный графен (на SiO2 или другой подложке); 5) экспериментальные и теоретические гидрированные углеродные однослойные нанотрубки и экспериментальный гидрированный фуллерен C60H36; 6) экспериментальные графеновые поверхностные «наноблистеры», гидрированные с их внутренней стороны (до графанового состава) и содержащие «интерколированный» газообразный молекулярный водород высокого давления, образующиеся на поверхности высоко ориентированного пиролитического графита (HOPG) или эпитаксиального графена при их обработке атомарным газообразным водородом; 7) экспериментальные гидрированные (до графанового состава) графитовые нановолокна с «интерколированными» в них нанообластями твердого (или жидкого) молекулярного водорода с высокой плотностью, что связано с разработкой прорывной нанотехнологии хранения водорода в эко-автомобилях с топливными элементами и другими проблемами водородной энергетики.

Об авторе

Ю. С. Нечаев
ФГУП «ЦНИИчермет им. И.П. Бардина»; Институт металловедения и физики металлов им. Г.В. Курдюмова
Россия


Список литературы

1. Geim A.K., Novoselov K.S. The rise of graphene. // Nature Materials, 2007, vol. 6, iss. 3, pp. 183-191.

2. Palerno V. Not a molecule, not a polymer, not a substrate.the many faces of graphene as a chemical platform. // Chemical Communications, 2013, vol. 49, iss. 28, p.p. 2848-2857.

3. Sofo J.O., Chaudhari A.S., Barber G.D. Graphane: A two-dimensional hydrocarbon. // Phys. Rev. B, 2007, vol. 75, p.p. 153401-1-4.

4. Openov L.A., Podlivaev A.I. Thermal desorption of hydrogen from graphane. // Technical Physics Letters, 2010, vol. 36, iss. 1, p.p. 31-33.

5. Elias D.C., Nair R.R., Mohiuddin T.M.G., Morozov S.V., Blake P., Halsall M.P., Ferrari A.C., Boukhvalov D.W., Katsnelson M.I., Geim A.K., Novoselov K.S. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. // Science, 2009, vol. 323, # 5914, p.p. 610-626 (together with Supplementary material).

6. Openov L.A., Podlivaev A.I. Thermal stability of single-side hydrogenated graphene. // Technical Physics, 2012, vol. 57, iss. 11, p.p. 1603-1605.

7. Pujari B.S., Gusarov S., Brett M., Kovalenko A. Single-side-hydrogenated graphene: Density functional theory predictions. // Physical Review B, 2011, vol. 84, p.p. 041402-1-4 (and p.p 1-2 of Supplementary material).

8. Xiang H.J., Kan E.J., Wei S.-H., Gong X.G., Whangbo M.-H. Thermodynamically stable single-side hydrogenated graphene. // Physical Review B, 2010, vol. 82, p.p. 165425-1-4.

9. Podlivaev A.I., Openov L.A. On thermal stability of graphone. // Semiconductors, 2011, vol. 45, # 7, p.p. 958-961.

10. Nikitin A., Li X., Zhang Z., Ogasawara H., Dai H., Nilsson A. Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds. // Nano Lett., 2008, vol. 8, # 1, p.p. 162-167.

11. Nikitin A., Näslund L.-A., Zhang Z., Nilsson A. C-H bond formation at the graphite surface studied with core level spectroscopy. // Surface Science, 2008, vol. 602, iss. 14, p.p. 2575-2580.

12. Bauschlicher C.W. (Jr.), So C.R. High coverages of hydrogen on (10.0), (9.0) and (5.5) carbon nanotubes. // Nano Lett., 2002, vol. 2, iss. 4, p.p. 337-341.

13. Pimenova S.M., Melkhanova S.V., Kolesov V.P., Lobach A.S. The enthalpy of formation and C-H bond enthalpy hydrofullerene C60H36. // J. Phys. Chem. B, 2002, vol. 106, iss. 9, p.p. 2127-2130.

14. Nechaev Yu.S. Carbon nanomaterials, relevance to the hydrogen storage problem. // J. Nano Res., 2010, vol. 12, p.p. 1-44.

15. Waqar Z. Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption. // J. Mater. Sci., 2007, vol. 42, iss. 4, p.p. 1169-1176.

16. Nechaev Yu.S., Alexeeva O.K., Oechsner A. Analytical review on the hydrogen multilayer intercalation in carbonaceous nanostructures: Relevance for development of super-adsorbents for fuel-cellpowered vehicles. // J. Nanosci. Nanotechnology, 2009, vol. 9, iss. 6, p.p. 3949-3958.

17. Watcharinyanon S., Virojanadara C., Osiecki J.R., Zakharov A.A., Yakimova R., Uhrberg R.I.G., Johansson L.I. Hydrogen intercalation of graphene grown on 6H-SiC(0001) // Surface Science, 2011, vol. 605, iss. 17-18, p.p. 1662-1668.

18. Nechaev Yu.S. Solid hydrogen in multigraphane nanostructures. // Int. Sc. J. for Fundamental and Applied Physics, 2012, # 01, p.p. 38-60 (in Russian).

19. Nechaev Yu.S. On the solid hydrogen intercalation in multilayer graphane-like nanostructures, relevance to the storage applications. // J. Nano Res., 2011, vol. 15, p.p. 75-93.

20. Nechaev Yu.S. On the solid hydrogen carrier intercalation in graphane-like regions in carbon-based nanostructures. // Int. J. Hydrogen Energy, 2011, vol. 36, p.p. 9023-9031.

21. Nechaev Yu.S. The high-density hydrogen carrier intercalation in graphane-like nanostructures, relevance to its on-board storage in fuel-cell-powered vehicles. // The Open Fuel Cell Journal, 2011, vol. 4, p.p. 16-29.

22. Xiang H., Kan E., Wei S.-H., Whangbo M.-H., Yang J. “Narrow” graphene nanoribbons made easier by partial hydrogenation. // Nano Lett., 2009, vol. 9, iss. 12, p.p. 4025-4030.

23. Lebegue S., Klintenberg M., Eriksson O., Katsnelson M.I. Accurate electronic band gap of pure and functionalized graphane from GW calculations. // Phys. Rev. B - Condensed Matt. Mat. Phys., 2009, vol. 79, iss. 24, art. # 245117.

24. Zhou J., Wang Q., Sun Q., Chen X.S., Kawazoe Y., Jena P. Ferromagnetism in semihydrogenated graphene sheet. // Nano Letters, 2009, vol. 9, iss. 11, p.p. 3867-3870.

25. Dzhurakhalov A.A., Peeters F.M. Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane. // Carbon, 2011, vol. 49, p.p. 3258-3266.

26. Ruffieux P., Gröning O., Bielmann M., Mauron P., Schlapbach L., Gröning P. Hydrogen adsorption on sp2-bonded carbon: influence of the local curvature. // Phys. Rev. B, 2002, vol. 66, p.p. 245416-1-8.

27. Sha X., Jackson B. First-principles study of the structural and energetic properties of H atoms on graphite (0001) surface. // Surf. Sci., 2002, vol. 496, p.p. 318-330.

28. Sluiter M.H.F., Kawazoe Y. Cluster expansion method for adsorption: application to hydrogen chemisorption on graphene. // Phys. Rev. B, 2003, vol. 68, p.p. 085410-1-7.

29. Yazyev O.V., Helm L. Defect-induced magnetism in graphene. // Phys. Rev. B, 2007, vol. 75, p.p. 1254081-5.

30. Lehtinen P.O., Foster A.S., Ma Y., Krasheninnikov A.V., Nieminen R.M. Irradiation-induced magnetism in graphite: a density functional study. // Phys. Rev. Lett., 2004, vol. 93, p.p. 187202-1-4.

31. Boukhvalov D.W., Katsnelson M.I., Lichtenstein A.I. Hydrogen on graphene: total energy, structural distortions and magnetism from first-principles calculations. // Phys. Rev. B, 2008, vol. 77, p.p. 0354271-7.

32. Jiang D., Cooper V.R., Dai S. Porous graphene as the ultimate membrane for gas separation. // Nano Lett., 2009, vol. 9, p.p. 4019-4024.

33. Brito W.H., Kagimura R., Miwa R.H. Hydrogenated grain boundaries in graphene. // Applied Physics Letters, 2011, vol. 98, iss. 21, art. no. 213107

34. Tapaszto L., Nemes-Incze P., Dobrik G., Jae Yoo K., Hwang C., Biro L.P. Mapping the electronic properties of individual graphene grain boundaries. // Applied Physics Letters, 2012, vol. 100, iss. 5, Article # 053114

35. Banhart F., Kotakoski J., Krasheninnikov A.V. Structural defects in graphene ( Review ) // ACS Nano, 2011, vol. 5, iss. 1, p.p. 26-41

36. .Yazyev, O.V., Louie, S.G. Topological defects in graphene: Dislocations and grain boundaries. // (2010) Physical Review B - Condensed Matter and Materials Physics, 2010, vol. 81, iss. 19, art. no. 195420

37. Kim K., Lee Z., Regan W., Kisielowski C., Crommie M.F., Zettl A. Grain boundary mapping in polycrystalline graphene. // ACS Nano, 2011, vol. 5, iss. 3, p.p. 2142-2146

38. Koepke J.C., Wood J.D., Estrada D., Ong Z.-Y., He K.T., Pop E., Lyding J.W. Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: A scanning tunneling microscopy study. // ACS Nano, 2013, vol. 7, iss. 1, p.p.75-86.

39. Zhang J., Zhao J. Structures and electronic properties of symmetric and nonsymmetric graphene grain boundaries. // Carbon, 2013, vol. 55, p.p. 151-159.

40. Yakobson B.I., Ding F. Observational geology of graphene, at the nanoscale ( Review). // ACS Nano, 2011, vol. 5, iss. 3, p.p. 1569-1574.

41. Cockayne E., Rutter G.M., Guisinger N.P., Crain J.N., First P.N., Stroscio J.A. Grain boundary loops in graphene. // Physical Review В - Condensed Matter and Materials Physics, 2011, vol. 83, iss. 19, article # 195425.

42. Zhang J., Zhao J., Lu J. Intrinsic strength and failure behaviors of graphene grain boundaries. // ACS Nano, 2012, vol. 6, iss. 3, p.p. 2704-2711.

43. Sessi P., Guest J.R., Bode M., Guisinger N.P. Patterning graphene at the nanometer scale via hydrogen desorption. // Nano Letters, 2009, vol. 9, iss. 12, pp. 4343-4347.

44. Bazarov I.P. Thermodynamics. Vysshaya Shkola, Moscow, 1976.

45. Karapet’yants M.K., Karapet’yants M.L. Osnovnye Termodinamicheskie Konstanty Neorganicheskikh i Organicheskikh Veshchestv (Fundamental Thermodynamic Constants of Inorganic and Organic Substances), Khimiya, Moscow, 1968.

46. Zhukhovitskii A.A., Shvartsman L.A. Physical Chemistry, Metallurgiya, Moscow, 1987.

47. Xie L., Wang X., Lu J., Ni Z., Luo Z., Mao H., Wang R., Wang Y., Huang H., Qi D., Liu R., Yu T., Shen Z., Wu T., Peng H., Özyilmaz B., Loh K., Wee A.T.S., Ariando, Chen W. Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. // Applied Physics Letters, 2011, vol. 98, iss. 19, article # 193113.

48. Lee C., Wei X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. // Science, 2008, vol. 321, iss. 5887, p.p. 385-388.

49. Eckmann A., Felten A., Mishchenko A., Britnell L., Krupke R., Novoselov K.S., Casiraghi C. Probing the nature of defects in graphene by Raman spectroscopy. // Nano Letters, 2012, vol. 12, iss. 8, p.p. 3925-3930.

50. Yang F.H., Yang R.T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes, Carbon, 2002, vol. 40, p.p. 437-444.

51. Wojtaszek M., Tombros N., Garreta A., Van Loosdrecht P.H.M., Van Wees B.J. A road to hydrogenating graphene by a reactive ion etching plasma. // J. Appl. Phys., 2011, vol. 110, iss. 6, article # 063715.

52. Castellanos-Gomez A., Wojtaszek M., Arramel, Tombros N., Van Wees B.J. Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy. // Small, 2012, vol. 8, iss. 10, p.p. 16071613.

53. Castellanos-Gomez A., Smit R.H.M., Agraït N., Rubio-Bollinger G. Spatially resolved electronic inhomogeneities of graphene due to subsurface charges. // Carbon, 2012, vol. 50, iss. 3, p.p. 932-938.

54. Castellanos-Gomez A., Smit R.H.M., Agraït N., Rubio-Bollinger G. Spatially resolved electronic inhomogeneities of graphene due to subsurface charges. // Carbon, 2012, vol. 50, iss. 3, p.p. 932-938.

55. Bocquet F.C., Bisson R., Themlin J.-M., Layet J.-M., Angot T. Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001). // Physical Review B - Condensed Matter and Materials Physics, 2012, vol. 85, iss. 20, article # 201401.

56. Luo Z., Yu. T., Kim K.-J., Ni Z., You Y., Lim S., Shen, Z., Wang S., Lin, J. Thickness-dependent reversible hydrogenation of graphene layers. // ACS Nano, 2009, vol. 3, # 7, p.p. 1781-1788.

57. Hornekaer L., Sljivancanin Z., Xu W., Otero R., Rauls E., Stensgaard I., Lægsgaard E., Hammer B., Besenbacher F. Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. // Phys. Rev. Lett., 2006, vol. 96, article # 156104.

58. Balog R., J0rgensen B., Wells J., Lægsgaard E., Hofmann P., Besenbacher F., Hornekær L. Atomic hydrogen adsorbate structures on graphene. // J. Am. Chem. Soc., 2009, vol. 131 iss. 25, p.p. 8744-8745.

59. Waqar Z., Klusek Z., Denisov E., Kompaniets T., Makarenko I., Titkov A., Saleem A. Effect of atomic hydrogen sorption and desorption on topography and electronic properties of pyrolytic graphite. // Electrochemical Society Proceedings, 2000, vol. 2000 16, p.p. 254-265.

60. Trunin R.F., Urlin V.D., Medvedev A.B. Dynamic compression of hydrogen isotopes at megabar pressures. // Phys. Usp., 2010, vol. 53, p.p. 605-622.

61. Gupta B.K., Tiwari R.S., Srivastava O.N. Studies on synthesis and hydrogenation behavior of graphitic nanofibers prepared through palladium catalyst assisted thermal cracking of acetylene. // J. Alloys Compd., 2004, vol. 381, p.p. 301-308.

62. Park C., Anderson P.E., Chambers A., Tan C.D., Hidalgo R., Rodriguez N.M. Further studies of the interaction of hydrogen with graphite nanofibers // J. Phys. Chem. B, 1999, vol. 103, p.p. 10572-10581.

63. Lin Y., Ding F., Yakobson B.I. Hydrogen storage by spillver on graphene as a phase nucleation process. // Phys. Rev. B - Condens. Matter. Mater. Phys., 2008, vol. 78, article # 041402.

64. Singh A.K., Ribas M.A., Yakobson B.I. H-spillover through the catalist saturation: An AB initio thermodynamics study. // ACS Nano, 2009, vol. 3, p.p.1657-1662.

65. Wang L., Yang R.T. New sorbents for hydrogen storage by hydrohen spillover - A review. // Energy and Environmental Science, 2008, vol. 1, p.p. 268-279.

66. Wang L., Yang R.T. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spllover. // Catalysis Reviews - Science and Engineering, 2010, vol. 52, p.p. 411-461.

67. Gao Y., Zhao N., Li J., Liu E., He C., Shi C. Hydrogen spillover storage on Ca-decorated graphene. // Int. J. Hydrogen Energy, 2012, vol. 37, iss. 16, p.p. 11835-11841.

68. Wang L., Yang R.T. Molecular hydrogen and spiltover hydrogen storage on high surface area carbon sorbents. // Carbon, 2012, vol. 50. iss. 9, p.p. 3134-3140.

69. Han S.S., Jung H., Jung D.H., Choi S.-H., Park N. Stability of hydrogenation states of graphene and conditions for hydrogen spillover. // Phys. Rev. B -Condens. Matter. Mater. Phys., 2012, vol. 85, iss. 15, article # 155408.

70. Fruchart D. Large scale development of metal hydrides for stationary and nomad hydrogen storage units. Which are potential partners to built innovative solutions for sustainable and clean energy systems? // In: Materials of Int. Hydrogen Research Showcase 2011, University of Birmingham, UK, April 13-15, 2011; the UK-SHEC website: http://www.uk-shec.org.uk/ukshec/showcase/ShowcasePresentations.html.

71. Satyapal S., Petrovic J., Read C., Thomas G., Ordaz, G. The U.S. Department of Energy’s national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements. // Catal. Today, 2007, vol. 120, p.p. 246-257. (www.eere.energy.gov/hydrogenandfuelcells).

72. Zuettel A. Hydrogen the future energy carrier. // In: Materials of Int. Hydrogen Research Showcase 2011, University of Birmingham, UK, April 13-15, 2011; the UK-SHEC website: http://www.uk-shec.org.uk/ukshec/showcase/ShowcasePresentations.html.

73. DOE targets for onboard hydrogen storage systems for light-duty vehicles (http://wwwl.eere.energy.gov/hydrogenandfuelcells/storge/pdfs/targets_onboard_hydro_storage.pdf.).

74. Etsuo Akiba. “Hydrogen related R&D and hydrogen storage materials in Japan.” In: Materials of Int. Hydrogen Research Showcase 2011, University of Birmingham, UK, April 13-15, 2011; the UK-SHEC website: http://www.uk-shec.org.uk/ukshec/showcase/ShowcasePresentations.html.

75. Jong Won Kim. “Current status of R&D on hydrogen production and storage in Korea.” In: Materials of Int. Hydrogen Research Showcase 2011, University of Birmingham, UK, April 13-15, 2011; the UK-SHEC website: http://www.uk-shec.org.uk/ukshec/showcase/ShowcasePresentations.html


Рецензия

Для цитирования:


Нечаев Ю.С. О термодинамических характеристиках гидрированных моно - и полиграфеновых наноструктур в связи с проблемой хранения водородав эко-автомобилях с топливными элементами. Альтернативная энергетика и экология (ISJAEE). 2014;(10):27-55.

For citation:


Nechaev Yu.S. On thermodynamic characteristics of hydrogenated graphene-based nanostructures, relevance to the problem of the hydrogen storage in fuel-cell-powered ecological vehicles. Alternative Energy and Ecology (ISJAEE). 2014;(10):27-55. (In Russ.)

Просмотров: 268


ISSN 1608-8298 (Print)