Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Физические основы технологии и материаловедение сверхтонких мембран на основе сплавов палладия для сепарации водорода из газовых смесей

https://doi.org/ 10.15518/isjaee. 2014.20.009

Полный текст:

Аннотация

Исследовано влияние параметров микроструктуры тонких пленок сплава палладия В1 на характеристики взаимодействия водорода с этими плёнками. Показано, что в зависимости от параметров их роста, таких как скорость роста, температура роста, а также химический состав и морфология подложек роста, уже на начальной стадии (3 - 25 Å) формируется различная микроструктура пленок. Такая начальная микроструктура наследуется при дальнейшем росте толщин пленок вплоть до 30 - 50 нм. Р азличие в микроструктуре пленок приводит в результате к отличию термодинамических равновесных и кинетических параметров взаимодействия водорода с тонкими пленками сплава, в частности, растворимости водорода и коэффициента диффузии водорода в сплаве и, следовательно, водородопроницаемости этого сплава. Исследование шероховатости тонких пленок сплава палладия В1 при термической обработке свидетельствует о напряженном характере этих пленок в состоянии сразу после их роста. При этом степень напряженности пленок, выращенных на различных подложках, оказывается разной.

Об авторах

Владимир Тимофеевич Волков
Институт проблем технологии микроэлектроники и особочистых материалов АН
Россия


Анатолий Федорович Вяткин
Институт проблем технологии микроэлектроники и особочистых материалов АН
Россия


Валентин Георгиевич Еременко
Институт проблем технологии микроэлектроники и особочистых материалов АН
Россия


Юсиф Алекберович Касумов
Институт проблем технологии микроэлектроники и особочистых материалов АН
Россия


Анастасия Сергеевна Колчина
Институт проблем технологии микроэлектроники и особочистых материалов АН
Россия


Список литературы

1. Вяткин А.Ф., Волков В.Т., Колчина А. С., Байчток Ю.К. Композитные мембраны для сепарации водорода; микроструктурные аспекты // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). 2011. № 9 (101). C. 25-31.

2. Mekonnen W., Arstad B., Klette H., Walmsley J.C., Bredesen R., Venvik H., Holmestad R. Microstructural characterization of self-supported 1.6 pm Pd/Ag membranes // J. of Membrane Science. 2008. No 310. Р. 337-348.

3. Zhang Y., Gwak J., Murakoshi Y. Hydrogen permeation characteristics of thin Pd membrane prepared by microfabrication technology // J. of Membrane Science. 2006. № 277. P. 203-209.

4. Tucho W.M., Venvik H.Y., Stange M., Walmsley J.C., Holmestad R., Bredesen R. Effects of thermal activation on hydrogen permeation properties of thin, self-supported Pd/Ag membranes // Separation and Purification Technology. 2009. № 68. P. 403-410.

5. Pizzi D., Worth R., Baschetti M.G., Giulio C. Sarti, Ken-ichi Noda. Hydrogen permeability of 2.5 μm palladium-silver membranes deposited on ceramic supports // J. of Membrane Science. 2008. № 325. P. 446-453.

6. Патент 2285748 РФ C23C 26/00, B81B 3/00, H04R 7/16. / Способ изготовления композиционных мембран на основе тонких пленок металлов / Вяткин А.Ф., Волков В.Т., Старков В.В. // 10.02.2006 Бюл. № 29.

7. Tucho W.M., Venvik H.Y., Stange M. J.C. Walmsley, R. Holmestad, R. Bredesen Effects of thermal activation on hydrogen permeation properties of thin, self-supported Pd/Ag membranes // Separation and Purification Technology. 2009. № 68. P. 403-410.

8. Вяткин А.Ф., Волков В.Т., Еременко В.Г., Касумов Ю. А., Колчина А.С. Экспериментальные исследования начальных стадий роста тонких пленок сплава Pd-Ag // Поверхность, Рентгеновские, синхро-тронные и нейтронные исследования, поступила в редакцию 21.02.2014 (в печати).

9. Bartl M. H. Nanostructure-driven functionalities in thin films and coatings // Scripta Materialia, 2014. Vol. 74. P. 1-2.

10. Водород в металлах. Т. 2 C. 163. // М.: Издательство "Мир", 1981. 430 с.

11. Lewis F.A. Palladium Hydrogen System //Academic Press. London. 1967. P. 50.

12. Burger J.P., MacLachlan D.S., Mailfert R., Souffache B. Electrical resistivity of Pd-Hx: I. Residual resistivity // Solid State Communications. 1975. Vol. 17, No 3, P. 277-280.

13. Tripodi P., Avveduto A., Vinko J.D. Strain and resistivity of PdHx at hydrogen composition x > 0.8 // Journal of Alloys and Compounds. 2010. Vol. 500, No 1. P. 1-4.

14. Zhang W.-S., Zhang Z.-F., Zhang Z.-L. Some problems on the resistance method in the in situ measurement of hydrogen content in palladium electrode // Journal of Electroanalytical Chemistry. 2002. Vol. 528. P. 1-17.

15. Wang M., Feng Y. Palladium-silver thin film for hydrogen sensing // Sensors and Actuators B. 2007. Vol. 123. P. 101-106.

16. Offermans P., Tong H.D., C.J. M. van Rijn, Merken P., Brongersma S.H., Crego-Calama M. Ultra-low-power hydrogen sensing with single palladium nanowires // Applied Physics Letters. 2009. Vol. 94. P. 223110.

17. Kiefer T., Favier F., Vazquez-Mena O., Villanueva G., Brugger J. A single nanotrench in a palladium microwire for hydrogen detection // Nanotechnology. 2008. Vol. 19. P. 125502.

18. Rakesh K. Joshi, Subramanian Krishnan, Mashamichi Yoshimura, Ashok Kumar Pd Nanoparticles and Thin Films for Room Temperature Hydrogen Sensor // Nanoscale Research Letters. 2009. Vol. 4. P. 1191-1196.

19. Scharnagl K., Eriksson M. Hydrogen detection at high concentrations with stabilised palladium // Sensors and Actuators B. 2001. Vol. 78. P. 138-143.

20. Baranowski B., Filipek S.M., Szustakowski M., Farny J., Woryna W. Search for “cold-fusion” in some Me-D systems at high pressures of gaseous deuterium // Journal of the Less Common Metals. 1990. Vol. 158. P. 347-357.

21. Андреев Л.А., Вяткин А.Ф. Влияние поверхностных реакций на скорость взаимодействия водорода с алюминием // Физика металлов и металловедение. 1980. Т. 49, № 3ю С. 611-619.

22. Eastman J. A., Thompson L.J., Kestel B.J. Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium // Physical Review B. 1993. Vol. 48, No 1. P. 84-92.


Для цитирования:


Волков В.Т., Вяткин А.Ф., Еременко В.Г., Касумов Ю.А., Колчина А.С. Физические основы технологии и материаловедение сверхтонких мембран на основе сплавов палладия для сепарации водорода из газовых смесей. Альтернативная энергетика и экология (ISJAEE). 2014;(20):103-114. https://doi.org/ 10.15518/isjaee. 2014.20.009

For citation:


Volkov V.T., Vyatkin A.F., Eremenko V.G., Kasumov Y.A., Kolchina A.S. PHYSICAL BASES OF TECHNOLOGY AND MATERIAL SCIENCE OF ULTRATHIN PALLADIUM ALLOY MEMBRANES FOR THE HYDROGEN SEPARATION FROM GAS MIXTURES. Alternative Energy and Ecology (ISJAEE). 2014;(20):103-114. (In Russ.) https://doi.org/ 10.15518/isjaee. 2014.20.009

Просмотров: 73


ISSN 1608-8298 (Print)