Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

LITHIUM: GLOBAL RESERVES AND APPLICATION PROSPECTS

https://doi.org/10.15518/isjaee.2016.13-14.072-088

Abstract

The present review is dedicated to the world's lithium resources, and application areas of lithium and its compounds in everyday life and technology. The paper reviews of the world's largest lithium deposits and analyzes its global production and reserves. The estimates of reserves were made on the basis of information received from government and industry sources. Due to the market development of lithium power sources, the secondary resources become the most promising ones. Furthermore, the paper demonstrates the necessity of creation of processes for recycling of spent lithium power sources. In connection with rapid growth in lithium consumption, it is very urgent task of lithium extracting, and its production in the form of salts, and metal. The paper describes the modern sorption methods of lithium extraction from the poor composition natural waters and brines with the use of inorganic ion exchangers highly selective to lithium. We present the results of their tests on real natural brines. Particular attention is given to the review o f the lithium and its compounds application areas: lithium power sources; glass and ceramics; lubricants, regeneration of oxygen in the autonomous life support systems, production of polymeric materials and catalysts in chemical technology, metallurgy, pharmaceuticals, medicine, moreover, hydrogen energy, electronics and nonlinear optics, nuclear power, and used as rocket fuel. In the article, we provide an overview of p rices and demand for lithium and its compounds.

About the Author

P. G. Kudryavtsev
Holon Institute of Technology (HIT) POBox 305, 52 Golomb str., Holon-5810201, Israel tel.: +972 (52) 726-56-47; fax: +972 (3) 502-66-19
Russian Federation

Ph.D. (chemistry), Professor, Senior Researcher, academician IAELPS, academician RANS, HIT Holon Institute of Technology, Israel, Holon



References

1. Pilson M.E.Q. An introduction to the chemistry of the sea University of Rhode Island. Second edition. Cam-bridge university press, NY, 2013 (in Eng.).

2. Lithium. Statistics and Information. USGS Mineral Commodity. Available at: http://minerals.usgs.gov/minerals/pubs/commodity/lithium/ (in Eng.).

3. Burns E. Pay Dirt. Èlektronnyj resurs: http://evworld.com/library/pay_dirt.pdf (in Eng.).

4. Jaskula B.W. Minerals Yearbook - 2008, Lithium, U.S. Department of the Interior, U.S. Geological Survey, Oc-tober 2010 (in Eng.).

5. Boliv ia’s Lithium-Powered Future. Available at: http://foreignpolicy.com/slideshow/bolivias-lithiumpowered-future/ (in Eng.).

6. Rockwood Lithium. Available at: http://www.rockwoodlithium.com/ (in Eng.).

7. Lithium Corporation. Available at: http://www.lithiumcorporation.com/index.php (in Eng.).

8. Evans R.K. An Abundance of Lithium, March 2008, Available at:

9. http://www.evworld.com/library/KEvans_LithiumAbunance_pt2.pdf (in Eng.).

10. Belenickaya G.A. Tektoničeskie aspekty prostranstvennogo i vremennogo raspredeleniâ solenosnyh bassejnov mira. Èlektronnoe naučnoe izdanie «Al’manah Prostranstvo i Vremâ», Special’nyj vypusk SISTEMA PLANETA ZEMLÂ, 2013, vol. 4, iss. 1, pp. 1–31 (in Russ.).

11. Poleznye iskopaemye Izrailâ. Available at: https://ru.wikipedia.org/wiki/ (in Russ.).

12. Nissenbaum A. Trace Elements in Dead Sea Sediments. Israel Journal of Earth Science, 1974, vol. 2, pp. 111–116 (in Eng.).

13. Nissenbaum A. Minor and trace elements in Dead Sea water. Chemical Geology, 1977, vol. 19, iss. 1–4, pp. 99–111 (in Eng.).

14. Garret D.E., Laborde M. Recovering lithium from brine by salting out lithium sulfate monohydrate. Pat. USA N 4287163 C01D 15/06; C01D 15/00; B01D 009/02; C01B 035/00; C01B 035/14; C01D 015/06 // Bul., 01.09.1981 (in Eng.).

15. Berzain R.L. Method for concentration of lithium chloride from Salarde Uyuni brines. Rev. Boliv. Quim., 1985. Vol. 5, No 1. P. 8—20. In: CA. 1986. Vol. 104. ref. N 227124 h (in Eng.).

16. Lee J.M., Bauman W.C. Recovery of magnesium (2+) from brines. Pat. Can. N 1103399 B60B 9/26; B60B 9/00 // 16.09.1981. In: CA. 1982. Vol. 96. ref. N 38797 k

17. (in Eng.).

18. Zilberman M.V., Kalinin N.F., Chentsova T.V., Elizarova I.A., Antipov M.A., Muravev E.N. Sorbcionnaâ tehnologiâ pererabotki prirodnyh rassolov v soedineniâ litiâ, rubidiâ i ceziâ. Himiâ i tehnologiâ neorganičeskih sorbentov. Mežvuzovskij sbornik naučnyh trudov, Perm’, izd. Perm’ PI, 1989, pp. 5–9 (in Russ.).

19. Senyavin M.M., Krachak A.N., Nikashina V.A. Issledovanie sorbcii litiâ iz vysokomineralizovannyh rastvorov na različnyh tipah neorganičeskih ionitov. Himiâ i tehnologiâ neorganičeskih sorbentov. Mežvuzovskij sbornik naučnyh trudov, Perm’, izd. Perm’ PI, 1989, pp. 10–26 (in Russ.).

20. Bengtsson G.B., Bortun A.I., Strelko V.V. Strontium Binding Properties of Inorganic Adsorbents. Journal of Radioanalytical and Nuclear Chemistry, 1996, vol. 204, no 1, pp. 75–82 (in Eng.).

21. Onorin S.A., Volh in V.V. Sposob polučeniâ neorganičeskih ionoobmennikov. AC USSR no. 455560 B01J 1/22 // Bul., 1972 (in Russ.).

22. Volhin V.V., Leonteva G.V., Cheraneva L.G., Bahireva O.I. Sposob desorbcii litiâ s neorganiče-skogo ionoobmennika na osnove oksidov marganca i alûminiâ. Patent RF no.1811679 B01J 20/08, B01J 41/02 // Bul., 1991 (in Russ.).

23. Kudryavtsev P.G. Onorin S.A., Volhin V.V. Sposob polučeniâ neorganičeskogo sorbenta dlâ izvlečeniâ litiâ iz rastvorov. AC USSR no. 1160627 B01J 20/08, B01J 41/02 // Bûl., 1983 (in Russ.).

24. Kudryavtsev P.G. Onorin S.A., Volhin V.V., Yakimov V.A. Sposob polučeniâ neorganičeskogo sorbenta selektivnogo k litiû. AC USSR no. 1256274 B01J 20/08, B01J 41/02 // Bul., 1985 (in Russ.).

25. Onorin S.A., Volhin V.V. Sostav dlâ neorganičeskogo ionoob-mennika. AC USSR no. 451456 B01J 1/22 // Bûl., 1972 (in Russ.).

26. Liu Xudong, Lyu Yingchun, Zhang Zhihua, Li Hong, Hu Yong-Sheng, Wang Zhaoxiang, Zhao Yanming, Kuang Quan, Dong Youzhong, Liang Zhiyong, Fan Qinghua, Chen Liquan. Nanotube Li2MoO4: a novel and high-capacity material as a lithium- ion battery anode. Nanoscale, 2014, vol. 6, pp. 13660–13667 (DOI:10.1039/C4NR04226C) (in Eng.).

27. Wietelmann U., Bauer R.J. Lithium and Lithium Compounds. Ullmann's Encyclopedia of Industrial Chemis-try, 2002. Wiley-VCH, Weinheim. DOI:10.1002/14356007.a15_393 (34) (in Eng.).

28. Totten G.E.; Westbrook S.R., Shah R.J. Fuels and lubricants handbook: technology, properties, performance, and testing 1. ASTM International, 2003. ISBN 0-8031-2096-6 (in Eng.).

29. Bansal Raj K. Synthetic approaches in organic chemistry. 1996. ISBN 0-7637-0665-5 (in Eng.).

30. Yurkovetskii A.V., Kofman V.L., Makovetskii K.L. Polymerization of 1,2- dimethylenecyclobutane by organolithium initiators. Russian Chemical Bulletin, 2005, vol. 37, no 9, pp. 1782–1784 (DOI:10.1007/BF00962487) (in Eng.).

31. Quirk R.P., Cheng P.L. Functionalization of polymeric organolithium compounds. Amination of poly(styryl)lithium. Macromolecules, 1986, vol. 19, no 5, pp. 1291–1294 (DOI:10.1021/ma00159 a001) (in Eng.).

32. Stone F.G.A., West R. Advances in organometallic chemistry. Academic Press., 1980. ISBN 0-12- 031118-6. (in Eng.).

33. Managing Critical Isotopes. Stewardship of Lithium-7 Is Needed to Ensure a Stable Supply. GAO-13- 716, Sep-tember 2013 (in Eng.).

34. PWR – litievaâ ugroza. Available at: http://www.atominfo.ru/newsf/m0910.htm (in Russ.).

35. Managing critical isotopes. Stewardship of Lithium-7 Is Needed to Ensure a Stable Supply. Report to the Ranking Member, Subcommittee on Oversight, Committee on Science, Space, and Technology, House of Representatives, US Government Accountability Office, GAO-13-716, September 2013 (in Eng.).

36. Geddes J.R., Burgess S., Hawton K. et al. Longterm lithium therapy for bipolar disorder: Systematic review and meta-analysis of randomized controlled trials. The American Journal of Psychiatry, 2004, vol. 161, no 2, pp. 217–222. PMID 14754766 (in Eng.).

37. Bauer M., Döpfmer S. Lithium Augmentation in Treatment-Resistant Depression: Meta-Analysis of Placebo- Controlled Studies. Journal of Clinical Psychopharmacology, 1999, vol. 18, no 5 (in Eng.).

38. DOE Metal hydrides. 2015. Annual Progress Report. Available at: https://www.hydrogen.energy.gov/annual_progress15.html (in Eng.).

39. Meganne L. Christian and Kondo-François Aguey-Zinsou. Core–Shell Strategy Leading to High Reversible Hydrogen Storage Capacity for NaBH4. ACS Nano, 2012, vol. 6, no 9, pp. 7739–7751 (DOI: 10.1021/nn3030018) (in Eng.).

40. Lithium alumin ium hydride. Available at: https://en.wikipedia.org/wiki/Lithium_aluminium_hydride (in Eng.).

41. Yurkin A.M. Vyraŝivanie i svojstva monokristallov boratov litiâ, litiâ-ceziâ i bariâ: Ph.D. (engineering) dis. Novosibirsk, 2002 (in Russ.).

42. Tazhibayeva I., Beckman I., Shestakov V., Kulsartov T., Chikhray E., Kenzhin E., Kiykabaeva A., Kawamura H., Tsuchiya K. Tritium accumulation and release from Li2TiO3 during long-term irradiation in the WWR-K reactor. Journal of Nuclear Materials, 2011, vol. 417, pp. 748–752 (in Eng.).

43. Tsuchiya K., Nakamichi M., Nagao Y., Fujita J., Sagawa H., Tanaka S., Kawamura H. Integrated experiment of blanket in-pile mockup with Li2TiO3 pebbles. Fusion Engineering and Desing (Japan), 2000, vol. 51– 52, pp. 887–892 (in Eng.).

44. SQM Announces New Lithium Prices. Available at: http://www.prnewswire.com/news- releases/sqmannounces-new-lithium-prices-62933122.html (in Eng.).

45. Kaskey J. Empty textLithium Boom Drives Albemarle $6.2 Billion Rockwood Deal. Available at: http://www.bloomberg.com/news/articles/2014-07-15/lith ium-boom- drives-albemarle-6-2-b illionrockwood-deal (in Eng.).


Review

For citations:


Kudryavtsev P.G. LITHIUM: GLOBAL RESERVES AND APPLICATION PROSPECTS. Alternative Energy and Ecology (ISJAEE). 2016;(13-14):72-88. (In Russ.) https://doi.org/10.15518/isjaee.2016.13-14.072-088

Views: 2278


ISSN 1608-8298 (Print)